92 research outputs found

    The order of the Roberge-Weiss endpoint (finite size transition) in QCD

    Full text link
    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large NcN_c QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3d universality class. Phenomenological implications and further speculations about the QCD phase diagram are discussed.Comment: 5 pages, 8 figures. Version accepted for publication in Physical Review D (R

    Confining properties of QCD at finite temperature and density

    Full text link
    A disorder parameter detecting dual superconductivty of the vacuum is used as a probe to characterize the confining properties of the phase diagram of two color QCD at finite temperature and density. We obtain evidence for the disappearing of dual superconductivity (deconfinement) induced by a finite density of baryonic matter, as well as for a coincidence of this phenomenon with the restoration of chiral symmetry both at zero and finite density. The saturation transition induced by Pauli blocking is studied as well, and a general warning is given about the possible effects that this unphysical transition could have on the study of the QCD phase diagram at strong values of the gauge coupling.Comment: 13 pages, 23 figure

    Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields

    Full text link
    We investigate two flavor QCD in presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective theta term to the first order in the scalar product of E and B. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, then exploiting analytic continuation. Our results are relevant to a description of the effective pseudoscalar QED-QCD interactions.Comment: 5 pages, 4 figures, 1 table. New data and references added. Matches the published versio

    Direct numerical computation of disorder parameters

    Get PDF
    In the framework of various statistical models as well as of mechanisms for color confinement, disorder parameters can be developed which are generally expressed as ratios of partition functions and whose numerical determination is usually challenging. We develop an efficient method for their computation and apply it to the study of dual superconductivity in 4d compact U(1) gauge theory.Comment: 5 pages, 6 figures. Final revised version published in PR

    Two flavor QCD and Confinement

    Get PDF
    We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. A detailed comparison with previous works is performed.Comment: 46 pages, 20 eps figures, 9 tables, REVTeX

    A fully digital bridge towards the realization of the farad from the quantum Hall effect

    Get PDF
    This paper presents the implementation of an electronic fully-digital impedance bridge optimized for RC comparisons with equal impedance magnitudes, together with an evaluation of the uncertainty. This bridge has been designed with the goal of realizing the farad directly from the quantum Hall effect with a bridge uncertainty component at the 1E-7 level. Thanks to its simple design, ease of operation and affordability, this bridge is suitable to be industrially manufactured. Together with the increasing availability of graphene quantum Hall resistance standards, this can provide an affordable quantum realization of the unit farad for metrology institutes and calibration centres. In this paper we present the uncertainty budget of an example measurement and the results of the validation of the bridge against a suitably modified version of the traceability chain of the Italian national standard of capacitance. The combined uncertainty of the bridge resulted from repeated measurements (overall measurement time of about 200 min) is 9.2 × 10^−8, suitable for the primary realization of the unit of capacitance from a quantized Hall resistance standard. The crosstalk among the channels of the electrical generator is the most significant uncertainty component, possibly reducible with internal shielding and filtering of the electronic generator

    Localisation of Dirac eigenmodes and confinement in gauge theories: the Roberge-Weiss transition

    Get PDF
    Ample numerical evidence from lattice calculations shows a strong connection between the confining properties of gauge theories at finite temperature and the localisation properties of the low-lying Dirac eigenmodes. In this contribution we discuss recent progress on this topic, focussing on results for QCD at imaginary chemical potential ÎŒI/T = π at temperatures above the Roberge-Weiss transition temperature. These confirm the general picture of low modes turning from delocalised to localised at the deconfinement transition, in a previously unexplored setup with a genuine, physical transition in the presence of dynamical fermions. This further supports the use of Dirac eigenmodes as a tool to investigate the mechanisms behind confinement and the deconfinement transition

    An international comparison of phase angle standards between the novel impedance bridges of CMI, INRIM and METAS

    Get PDF
    We report here the results of a comparison of electrical impedance standards aimed at evaluating four novel digital impedance bridges developed by the national metrology institutes CMI, INRIM and METAS. This comparison, which is the first of its kind, involved phase angle impedance standards developed by TÜBITAK UME with phase angles of  ± 30° and  ± 60°, and magnitudes ranging from about 100 Ω to 1 MΩ. The comparison demonstrated agreement among the measurement results obtained with the different bridges, and allowed us to gather information on the stability of the phase standards and on more critical aspects related to the characterization of the bridges

    The phase diagram of QCD with four degenerate quarks

    Full text link
    We revisit the determination of the pseudo-critical line of QCD with four degenerate quarks at non-zero temperature and baryon density by the method of analytic continuation. We determine the pseudo-critical couplings at imaginary chemical potentials by high-statistics Monte Carlo simulations and reveal deviations from the simple quadratic dependence on the chemical potential visible in earlier works on the same subject. Finally, we discuss the implications of our findings for the shape of the pseudo-critical line at real chemical potential, comparing different possible extrapolations.Comment: 8 pages, 8 figures, 2 table

    A coaxial cryogenic probe for quantum Hall effect measurements in the AC regime

    Get PDF
    open9sìThe quantum Hall effect is the basis for the realisation of the resistance and impedance units in the revised International System of units of 2019. This paper describes a cryogenic probe that allows to set graphene Hall devices in quantisation conditions in a helium bath (4.2 K) and magnetic fields up to 6 T, to perform precision measurements in the ac regime with impedance bridges. The probe has a full coaxial wiring, isolated from the probe structure, and holds the device in a TO-8 socket. First characterisation experiments are reported on a GaAs device which shows quantisation at 5.5 T.openMartina Marzano, Ngoc Thanh Mai Tran, Vincenzo D’Elia, Danilo Serazio, Emanuele Enrico, Massimo Ortolano, Klaus Pierz, Jan Kučera, Luca CallegaroMarzano, Martina; Thanh Mai Tran, Ngoc; D'Elia, Vincenzo; Serazio, Danilo; Enrico, Emanuele; Ortolano, Massimo; Pierz, Klaus; Kučera, Jan; Callegaro, Luc
    • 

    corecore