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Abstract

We argue that the order of the chiral transition for Ny = 2 is a sensitive probe of the QCD
vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate
the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation
is performed with staggered fermions on lattices with N; = 4 and N, = 12, 16, 20, 24, 32 and quark
masses am, ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities
are measured and compared with the expectations of an O(4) second order and of a first order
phase transition. A second order transition in the O(4) and O(2) universality classes are excluded.
Substantial evidence emerges for a first order transition. A detailed comparison with previous

works is performed.
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I. INTRODUCTION

Ny = 2 QCD can provide fundamental insight into the mechanism of confinement. A
schematic view of the phase diagram is shown in Fig. [l [I]. The quark masses are assumed
to be equal for the sake of simplicity: m, = mg = m; p is the baryon chemical potential.

Consider the plane y = 0. As m — oo quarks decouple and the system tends to the
quenched limit. There the deconfining transition is well understood: the transition is an
order-disorder first order phase transition, the symmetry involved is Z3 and the Polyakov
line (L) is an order parameter. In the presence of quarks Z3 is explicitely broken and (L) is
not a good order parameter. Empirically, however, it works as an order parameter at quarks
masses down to m ~ 2.5 — 3 GeV.

At m ~ 0 a chiral phase transition takes place at T,, >~ 170 MeV, from the low temperature
phase where chiral symmetry is spontaneously broken to a phase in which it is restored: the
chiral condensate (1)1)) is the corresponding order parameter. At some temperature 74 > T,
also the Us(1) symmetry, which is broken by the anomaly, is expected to be effectively
restored.

It is not understood what the chiral transition has to do with the deconfining transi-
tion, but empirically the Polyakov line has a rapid increase at the transition temperature,
indicating deconfinement.

More generally the transition line in Fig. [l is defined by the maxima of a number of
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FIG. 1: Schematic phase diagram of Ny = 2 QCD.



susceptibilities (Cy, Xm, --.) which all coincide within errors, and which indicate a rapid
variation of the corresponding parameters across the line.

A renormalization group analysis plus e-expansion techniques can be made at m ~ 0,
assuming that the relevant degrees of freedom for the chiral transition are scalar and pseu-
doscalar fields [2, 13, 4], or more precisely that the order parameters are the vacuum expec-

tation values (v.e.v.) of the following fields

¢ Gij =(@G(1 +5)q)  (,5=1,...,Ny). (1)

Under chiral and U4 (1) transformations of the group U (1)@SU(N;)®@SU(Ny), ¢ transforms
as

¢ — €U oU_ (2)

so that by the usual symmetry arguments, and neglecting irrelevant terms

2
Ly = %Tr{amfaw}—%Trwcb}—%zgl (Tr{cb*cb})z—%zngr{(M)zHc detg + detT] .

(3)
The last term describes the anomaly: indeed it is SU(Ny) @ SU(Ny) invariant, but not
U4(1) invariant.

A second order phase transition corresponds to an infrared (IR) stable fixed point. For
Ny > 3 the effective action is of the form Eq. ([B) and no such point exists so that the
transition is first order. For Ny = 2, det¢ has mass dimension 2 so that other relevant terms
emerge, like (detg + det¢)? and Tr{¢'¢}(deto + dete'). If the anomaly term in Eq. (B
vanishes (¢ ~ 0), i.e. if the 1’ mass vanishes at T, then there is no IR stable fixed point and
the transition is first order. If instead ¢ # 0 the symmetry is SU(2) ® SU(2) ~ O(4) and a
fixed point exists which can produce a second order phase transition.

In the first case the phase transition is first order also at m # 0 and most likely up to
m = oQ.

In the second case a phase transition is only present at m = 0, which goes into a contin-
uous crossover as m # 0: this is true also in presence of a small chemical potential u # 0, so
that a tricritical point is expected in the T-u plane (see Fig.[l) at the border of the crossover
with the first order transition line which takes place in the small T', large u region [4]. Pro-
posals exist to detect the tricritical point in heavy ion collisions: obviously no such point

exists if the transition at u = 0 is first order.



The issue is in fact fundamental. If confinement is an absolute property of the QCD
vacuum and the deconfinement transition corresponds to a change of symmetry (order —
disorder), then a crossover is excluded and the only allowed possibility is that the transition
is always first order. The argument also extends to the case of 2+ 1 flavors, of which Fig. [
is a boundary|[8]. The question deserves a careful study.

A few groups have investigated the problem on the lattice with staggered [6, (7, I§, (9,
10, 11, 12] or Wilson [13] fermions. The strategy used has either been to look for signs of
discontinuity at the transition, or to study the dependence on m of the peak of different
susceptibilities, or to study the magnetic equation of state. No clear sign of discontinuity
has been observed, but also no conclusive agreement of scaling with O(4) critical indexes. In
particular the thermal exponent y; = 1/v (see Sect. [l for the definition) determined using
staggered fermions differs significantly from that of O(4)-O(2) (no direct determination of
the critical exponents exists for Wilson quarks). A general tendency exists however in the
community to consider the chiral transition second order, and the line of Fig. [l a crossover.

In the present work we have made a big numerical effort and used large lattices attempting
to clarify the issue. Like most of the other works we use non improved Kogut—Susskind
action, and lattices 4 x L? with L, = 16,20,24,32. Some scaling violations are expected
and a more careful study with L, = 6 and an improved action is planned in order to control
them.

A preliminary account has been presented at conferences [14]. The present paper contains
more data and a full analysis.

The paper is organized as follows: In Section [l we explain the strategy used to attack
the problem. Section [l contains details about the simulations and the numerical results.
Section [[V] contains the analysis of scaling. Section [Vl contains a discussion and the conclu-

sions.

II. STRATEGY

The theoretical tool to investigate the order of a phase transition is finite size scaling [15,
16]. The extrapolation from finite size L to the thermodynamical limit Ly = 0o is governed
by the critical indexes, which identify the order and the universality class of the transition.

Approaching the transition, for a higher order or weak first order transition, the correla-



tion length of the order parameter £ goes large compared to the lattice spacing a, so that
the dependence of physical quantities on a/& can be neglected. More precisely, if L£/kT is

the effective action (density of free energy)

L

— ~ L1
=

@ L
e

the dependence on a/¢ disappears as T, is approached, since £ diverges as

aqugh> (4)

£ oo T 7 (5>

where 7 =1 — Tl The variable L, /¢ can be traded with 7LY/” and the scaling law follows

£ —d l/l/ h
T = L% (TLS ,amgL¥ ) : (6)

The problem has two scales, £ and 1/m,. The effective action depends on the order
parameter, as dictated by the symmetry, and as 7 — 0 irrelevant terms can be neglected.
The thermodynamics is described by correlators of the order parameter, which contain in-
formation on the discontinuities of the thermodynamical quantities. The most fundamental
quantity is the specific heat, which is always guaranteed to exhibit the correct critical be-
haviour, independently of the identification of the correct order parameter.

For the specific heat the scaling law is
Cy = Co = L, (rLY" amy L") ; (7)

Cy stems from an additive renormalization [16].

For the susceptibility x of the order parameter O(z)

= [ & [(0@)00) - (0)] ®)
the scaling law is
X = LYy (TLY am, L2) . (9)

We shall discuss the question if a subtraction is needed for x as for the specific heat in
Sect VDI

Analogous scaling laws can be derived for mixed susceptibilities.

The values of the indexes characterize the transition: the values relevant to the analysis

which follows are listed in Tablell O(4) is the symmetry expected if the chiral transition is

>



Yt Yn v a g & 0
O(4) |1.336(25)|2.487(3)]0.748(14) | -0.24(6) |1.479(94)|0.3837(69)|4.852(24)
O(2) [1.496(20)2.485(3)| 0.668(9) |-0.005(7)|1.317(38)|0.3442(20)|4.826(12)
MFE | 32 9/4 2/3 0 1 1/2 3
15t Order 3 3 1/3 1 1 0 00

TABLE I: Critical exponents.

second order, but it can break down to O(2) by the lattice discretization for Kogut—Susskind
fermions [d] at non zero lattice spacing.

The scaling law in Eq. ([d) for the specific heat is valid independent of the knowledge of
the order parameter. The scaling law in Eq. () instead is correct only if the choice of the
order parameter is the right one. In principle the matching between () and (&) can be used
to legitimate any guess on the symmetry and on the order parameter.

The scaling laws ([d) and (@) are difficult to test because they depend on two variables.
A possible strategy is to keep one of them fixed and to study the scaling with respect to
the other. As one can see in Table [l the index yj, is the same within errors for O(4) and
O(2) symmetry. In order to reduce the problem to one scale, we have made a number of
simulations at different values of L, and am, keeping am,L?" fixed and assuming y; = 2.49
which corresponds to O(4) or O(2). In this way as L is increased, am, — 0, so that the
infinite volume limit corresponds to the chiral transition at am, = 0.

From Eq.s (@) and (@) it follows that the maxima at constant am,L¥" scale as

(CV - CO)max X L?/V

Xmax X L;V/”. (10)

as L, — oo and their positions scale as

(11)

TLYY = const

If O(4) or O(2) is the correct symmetry, the values of a/v and /v should be consistent
with the corresponding values listed in Table [l

Notice that Eq.s ([) and ({) involve the long range part of the correlations, i.e. they are
related to the infrared regime, and are not expected to be significantly affected by scaling

violations O(a/€).



If the answer to this test is positive the chiral transition is second order at am, = 0 and
a crossover at am, # 0. If instead the answer is negative and the assumption of Ref.[2, 13, 4]
about the relevant degrees of freedom is correct, the transition is first order at am, = 0, and
also at am, # 0.

An alternative strategy can be as follows. At fixed am,, 3 the values of the susceptibility
should converge at large L, if £ is analytic. One can change variable by replacing 7L!/”

with the ratio
TLY/Y

— —1/(vyn)
(@ Lp o — T(@ma) (12)
The scaling laws Eq.s ([d) and (@) become then
Cy — Cy =~ L, (T(amq)_l/(”yh), aqugh) (13)
X = L6y (7(amg) 700, am, L) . (14)

At large L, the dependence on am,L¥% must cancel the dependence on Ly in front of the

scaling functions in Eq.s (@) and ({). It follows that

Cy — Cp ~ (amq)_0‘/(”?4'1)fc (T(amq>_1/(l’yh)) (15)
X (amq)_'Y/(Vyh)fX (T(amq>—1/('/yh)) . (16)

The peaks of (Cy — Cp) and of x should then scale as

(Cv = Co)max < (amyg)=/0m)

Ymax O (amq)—v/('/yh) (17)
as amy, — 0. As for the position of the maxima, it scales according to
7(amg) ¥ = const . (18)

An alternative possibility is to keep the scaling in the form of Eq.s ([) and (@), and require
that the volume dependence disappears at 7L!/” fixed. This kind of scaling could work
better if the correlation length is comparable to L,, while aLym, > 1. This implies the

scaling laws:

CV — C(] ~ (amq)—a/(Vyh)fc (TL;/V) (19>
X = (amy) 7/ vn) £ (TLi/”) ' 20)

7



Eq.s (@) for the maxima stay unchanged, but the positions of the maxima scale now as
TLYY = const (21)

and the width of the peaks are volume dependent.

All that is expected to be true at sufficiently large values of aL, - m, and at sufficiently
small values of am,, such that we are not too far from the critical point.

T =1 —T/T, is usually taken in the literature [9, [10] as proportional to [y — (3, where
By is the value of 3 = 2N,/g* at the chiral (am, = 0) transition, and all the analyses of the
scaling law are based on that choice.

In fact, since

1
T=— 22
Lia(5,am,) (22)
the correct definition is
T a’(ﬁOa O)
T T. a(B, amy) (23)

and the dependence on am, is non trivial (see e.g. [18]). a(f8,am,) is expected to be an
analytic function in a neighborhood of the critical point and therefore for sufficiently small
8. — 6 and m
da da
a(B,am,) ~ a(f,0) + %(ﬂoa 0)(B = Bo) + m

If needed higher orders in am, and (5—/0) can be included. It then follows that at sufficiently

(8o, 0)am,, . (24)

small values of am,

7 =C(6o — B+ kmamy) (25)
with
_ Olna
C — 86 (/60a O)
~ 10lna
km - aﬁamq (/60a O) . (26)

In the quenched case this reduces to 7 o< Gy — § as usual: in the presence of dynamical
quarks k,, # 0 [1§].

The scaling law for the position of the peaks becomes then
Bo — Be + kmam, = const - (am,)"/ ) (27)

8



Eq.s (@) and (@) should be valid if Ly > &/a, Ly > 1/(am;) (see Table ). If the
alternative possibility is considered, i.e. requesting that the free energy stays finite when

Ly — oo at fixed 7L/*, the position scales instead as
Bo — Be + kmam, = const - L7Y7 (28)

Analogous formulae can be written including quadratic terms of the expansion Eq. [Z4)) (see
Section [V below).

An alternative technique is to investigate the order of the transition by looking for dis-
continuities: if the transition is first order at m = 0, it is expected to be so also at m # 0.
If the transition is weak first order, at small volumes compared to some critical volume it
will behave as if the free energy were regular, so that Eq.s ([H), (I8) and (), or () and
[&0), are expected to be valid, with the critical indexes appropriate to first order. At larger
volumes, however, the peak of the specific heat as well as the peaks of the other susceptibil-
ities should increase proportionally to the volume, as a consequence of the discontinuity in
the first derivatives of the free energy. At the same time a bistability should appear in the
time histories [§]. Such an analysis has been in particular performed in Ref.[11, [12]: some
sign of growth with the volume has been observed, but no significant bistability; we will
comment on this result below. Of course if a discontinuity is observed one can conclude that
the transition is first order. If not one cannot exclude that it could be observed at larger
volumes.

Finally one can investigate the so-called magnetic equation of state [12], i.e. the scaling
behaviour of the chiral order parameter itself, (¢1)), versus the reduced temperature. The

scaling law is
(W) == m° f(rm=1/00)) (29)

and again it can provide information on the critical indexes.
III. NUMERICAL SIMULATIONS

A. Algorithm

Monte Carlo simulations were performed using the standard staggered action. The Hybrid

R algorithm [17] was used for the configuration updating. Since it is a non-exact algorithm,

9



its systematic errors must be kept under control. The finite integration step used in the
molecular dynamics evolution introduces a systematic error on the mean values of observ-
ables proportional to the integration step squared A72. Great care was taken to ensure that
this systematic shift were much smaller than the statistical error in each Monte Carlo run.
Typical values of the integration step A7 vary with the mass of the quarks in units of the
lattice spacing as AT = am,/4. When the use of that value for the integration step was
too proibitive, i.e. at the smallest quarks masses used in this work, the integration step
was in any case taken below am,/2. The stopping condition used for the conjugate gradient
inversion was fixed requiring that the residue were smaller than 1078. The length of the

molecular dynamics trajectories was fixed to 1 for all of our simulations.

B. Run parameters

All of our numerical simulations were performed using a lattice temporal extent of L; = 4.
To begin with we run two sets of Monte Carlo simulations fixing for each the value of am,L¥"
as explained in Section [ The two sets, called in the following Runl and Run2, have
amg LY = 74.7 and amyL¥ = 149.4 respectively. The spatial lattice sizes Ly used for each
of the two sets are L, = 12,16, 20, 32.

Additional simulations at L, = 24 and am, = 0.04444 and at Ly = 16 and am, = 0.01335
were added. The second one was chosen by purpose at the same mass of the Ly = 32 of
Runl.

A summary of the bare quark masses and L, used is reported in Table [ The total
number of MC trajectories collected is also reported together with the quantity aLs - m, at
the pseudocritical value of the coupling 3. (am, was taken from the parametrization given
by the MILC collaboration in Ref.[18]). Since for all our runs the spatial extent is much
larger than the pion correlation length, no large infrared cut-off effects are expected, except
possibly for the run at Ly = 16 and am, = 0.01335 (see Table [I).

For each value of am, and L, and for each run, MC simulations were performed at
different [ values in order to inspect and to have under control the whole interesting critical

region. See Appendix [Al for the whole listing of our run parameters.

10



C. Data Reweighting

The collected raw data were analyzed using standard statistical procedures (see e.g. [19]).
For the history of each observable, thermalizations were taken self consistently to be five
times the integrated autocorrelation time estimated from thermalized trajectories.

The data collected were analyzed using the multi-histogram reweighting technique com-
bining data taken at different 3’s together. This method allows to extract mean values of
observables and their susceptibilities at intermediate § values over the whole range explored
with numerical simulations. Using the reweighted data, it is possible to locate accurately
the position at which the susceptibilities attain their maximum and their value at the maxi-
mum. Sometimes in previous studies a single point with high statistics at about the critical
point was used. Using data from simulations done at several § values covering the whole
critical region, eliminates the risk of a wrong extrapolation from a single 3 too distant from
the critical point!. Moreover the method allows a better sampling of the probability distri-
bution, due to the fact that different simulations are combined together, thus increasing the
precision and confidence of the measurement.

The errors of observable quantities were estimated using the bootstrap method. In prac-
tice, this means repeating the whole multi-histogram reweighting procedure a number of

times starting from random data samples distributed as the measured empirical distribu-

tions.
TABLE II: Run parameters for the numerical simulations.
Runl Run2 Other
Ly 12 16 20 32 12 16 20 32 16 24

amg 1/0.153518]0.075(0.04303|0.01335|/0.307036| 0.15 |0.08606|0.0267]0.01335|0.04444

# Traj. || 22500 |87700| 14520 | 14500 || 25000 [131390| 16100 |15100 || 10000 | 10000

aLg-mg|| 11.9 11.0 | 10.0 8.9 11.3 15.8 14.8 | 12.4 4.5 12.2

! Remember that for single histogram reweighting the statistics needed in order to extrapolate measured
quantities at a value of 8 = By + AS different from that used in the actual simulation grow exponentially
with AS.

11



D. Observables

For each generated configuration of our MC simulations we measured the average spatial
and temporal plaquettes (P,, P;), the chiral condensate (1)), the energy density (/Do)

and the following lattice susceptibilities (the notation is the same as in [11]):
i = (%) = (D) - repy2] (30)

= Z< waDis) (31)

Xeij = V[<PP> - <P> <F)]>]7 4] =0,T ( )

Yeur = VI((@Do)?) — (8Dg)’] (33)

Xe,i = < ¢D0¢ > < 2) <IED0¢>]= L=0,T (34)
xei = VI(P@9) — (B) (99)), i=o,7 (35)
Xer = V(@) (@Dow)) — (%)) ($Doth)] (36)

where V' = L3L; is the volume; Dy is the temporal component of the Dirac operator D.

The connected component of the chiral susceptibility x¢"" has not been measured for all
of our simulations but only for a fraction of them. The method used to extract x> is the
volume source method without gauge fixing as described in Ref.[11]. The disconnected com-
ponent gives the dominant contribution for large volumes and small masses. The connected
part is instead relevant at small volumes and relatively large masses. For most of our lattices
we have determined the connected part only around the peak, and we have considered it
as a constant with respect to 3. We estimate that this is a good approximation within our
errors. A representative example® is shown in Fig. B (taken at Ly = 24, am, = 0.04444).
The typical contribution to y,, of Y™ is less than about 15% of x%*¢ at the peak value
and is a slowly varying function of /3.

A comprehensive list of measured values of (P,), (P;), (), (/Dy) and the lattice

susceptibilities for our MC simulation can be found in Appendix [Al

2 For this lattice 9" was measured for all points.
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FIG. 2: Comparison between the connected and disconnectd component of x,,. The former is

typically a small fraction of the connected component at the peak position.

IV. SCALING ANALYSIS

The basic thermodynamic susceptibilities, i.e. the specific heat Cy,, the chiral suscepti-

bility x.,, and the mixed susceptibility x;

o= P g (37)
VT VTR o TR
T 92
T 0?
Xe = ST am, Y (39)

can be expressed as sums of the lattice susceptibilities (B0)-(B6) multiplied by regular func-
tions of # and am,. Specifically the specific heat Cy is a function of xcij, Xe,i and Xe,f;
X: is a function of x;; and x; ;. The contribution of other susceptibilities entering in the
expression of Cy and x; involving the quark mass are expected to be negligible in the chiral
limit [20]. As for x,,, 9/0(m,) in Eq.([BY) is intended at constant temperature. Since tem-

perature depends not only on 3 but also on am,, the physical y,, is a combination of y%s

m

conn

Xo™, Xt.r and X rr With computable coefficients.

By Cy in the following we mean x..,; the analysis with x., and x. ¢ is similar and
compatible with respect to scaling.
We are interested in studying the singular behavior of C'y, x,, and x; as the critical

surface is approached which is given by the most singular divergent quantity among the

13



lattice susceptibilities corresponding to a given termodynamical susceptibility.

A. Pseudocritical coupling

One of the observables analyzed in the literature to understand the order of the transition
has been the position of the peaks of thermodynamic susceptibilities as a function of am,,.
The position of all these peaks happen to coincide at given am, and L, thus defining a unique
(pseudo)critical coupling f.(am,). Previous works in the literature assume 7 < fy — 3, a
choice usually based on a strict analogy between QCD and the O(4) statistical model. In
fact the correct thermodynamical reduced temperature is given by Eq. (Z3). In principle
the dependence of a(f,am,) on am, could be measured by use of independent quantities
(see e.g. [1]8]). We will try a fit of the position of 3, by a form like Eq. (7)) or (28), which
is expected to be valid at sufficiently small values of am,. To extend the range of validity
of the approximation the quadratic terms proportional to amg, amy(Bo — B) and (Gy — 3)?

may be added:
T X (Bo — B) + kmamg + k2 (amq)2 + kmgamg(Bo — B) . (40)

A term kg2(fy — 5)* turns out to be negligible. In fact one can write the lattice spacing a

as:

b1

-~ 1 B\ p
“ = A3, amy) <4Ncbo> P <_4Ncb0> (41)

where the deviation from asymptotic scaling are represented by the fact that the term

A(B,am,) is § dependent. This term is slowly varying with § and can be well described
by a linear function of # with coefficients depending on am, in the relevant range of 3’s.
The kg coefficient is given by 0% In a/03?| s=g,,am,~0 can be computed and can be neglected
within errors. The other unknown parameters can be fitted to the data.

Fig. Bl shows the critical line 8.(am,). Our determinations are reported together with a
collection of world data3. A good agreement among different determinations can be appre-

clated.

3 Data of the JLQCD collaboration are taken from Ref. [11]. We thank E. Laermann and C. DeTar for
providing us with the data of the Bielefeld group and of the MILC collaboration respectively.
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FIG. 3: (Pseudo)critical couplings determined in this work are shown together with other de-
terminations form the literature. Logarithmic scale is used for the horizontal scale in the main
figure, while a linear scale is used for the smaller inset figure. The dotted line is the best fit

(x?/d.o.f =0.89, d.o.f. = 15) curve including am? and am,(3y — (c) terms for masses amg < 0.4.

The expected variation of 7 as a function of am, or L, is given by Eq. (I8) or (I):

7 = ke(amy)"™  or (42)

T = KLY . (43)

Notice that for a first order transition the exponent of am, is 1 and the term on the right
hand side of Eq. (2) can be reassorbed in k,, so that such term can be discriminated only
for a second order scaling behavior.

The unknown coefficients k,,,, k.2, ks and k; of the expansion of 7 around the critical
point are determined by use of a best fit procedure. We start from the form Eq. ([@3). In
agreement with previous works we find that the position of the peaks does not depend on

the lattice size |9, [L1], i.e. that k. = 0 within errors implying that no information can be
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obtained about the order of the transition (first order or second order O(4) or O(2)). The
quality of the fit assuming k. = 0 is shown in Fig. B and the resulting coefficients are listed
in the first line of Table [Tl These coefficients are obtained by a best fit up to a maximum
value of amy, (amy)mas, Which is then extrapolated to zero. They are stable and consistent
with a linear fit at low values of am, (< 0.0267) as shown in the second line of Table [l

The scaling of Eq. (1) or ([f3) assumes that aLsm, > 1 but the correlation length £ can
be comparable with L, which is certainly true sufficiently close to the critical point in case
of a second order or weak first order chiral transition.

We have then analyzed the scaling of the form Eq. ([I8) or #2). If the transition is first
order the analysis coincides with the analysis done for the scaling Eq. ([@3) and k,, is in fact
kpm — kr.

If the transition is O(4) a similar analysis can be performed (similar results hold for O(2)
or mean field). The x?/d.o.f is acceptable, the result for the coefficients is shown in the
third line of Table [Tl %, is consistent with zero, and the result is therefore compatible
with that of the first line. However the fit becomes unstable if we try to extrapolate to low
masses keeping only the linear term of Eq.([H0) (line 4 of Table [II)).

The critical coupling fy and the coefficient k,, are stable both for first order and O(4)
behavior and can thus be confidently estimated. Our final estimates, obtained by a weighted
average of linear and quadratic fits, are 5y = 5.2484(5) and k,, = 1.82(8) for a first order
transition; By = 5.2435(25) and k,, = 1.13(19) for O(4). Other terms cannot be reliably
estimated with present data. In particular we are not able to discriminate the contribution
of quadratic terms from that coming from k, and consequently it is not possible to establish

the order of the transition by looking at the (pseudo)critical couplings alone.

TABLE III: Best fit parameters for the scaling of the pseudocritical coupling. Different kind of fits

are explained in the text. k. is set to zero as explained in the text.

Bo Ko ky K2 Ko
5.2484(4) | 1.84(7) | =0 |-0.3(2.4)|-4.3(2.7)
5.2481(13)|1.75(13)| = =0 =0
5.2430(40)|1.20(60)| -0.1(1) | -7(6) | 6(6)
5.2437(21)(1.12(16)|-0.134(46)| =0 =0
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FIG. 4: Different behavior of predicted (pseudo)critical couplings for a first order transition and a
second order O(4). Present data do not permit a clear discrimination using only .. The 1o band
is displayed. Continuous lines correspond to a first order transition while the dotted lines are the

prediction for the O(4) symmetry.

The possibility to discriminate between the first order and O(4) behavior from the mea-
surement of (. is in practice very faint. Fig. () shows the different predictions for the
(pseudo)critical coupling based on available data. If we discard the high values of the masses
a possible difference would only be visible at very small bare quark masses. Using estimates
of k. shown in Table [l a quark mass of about 0.003 should be used, which requires a big
numerical effort.

We would like to remark that the explicit dependence of 7 on am, is in any case necessary

to fit present data. Fitting to a function of the form
ﬂc = 60 + CT(amq>yt/yh (44>

with O(4) values for the exponents, gives a x?/d.o.f ~ 21 in the interval up to (am,)maz =

0.075, which decreases as (amy)maq: decreases and is ~ 2 at (amy)maee = 0.02.
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As a final remark, the dependence on 3 and am, of the lattice spacing a Eq. can be
measured from other observables (see e.g. [1&]). In particular our estimate for k,, for a first
order transition (line 1 of Table [Tl is compatible with those of Ref. [18] k,,, ~ 1.95 (affected
by errors of order 20%). We notice that k. = 0 implies that 7 = 0 on the critical line, or,
by Eq. (24)) that the critical temperature is independent of am, near the chiral point.

B. Scaling at fixed am,LY"

As explained in details in Section [ we have adopted a novel strategy in order to simplify
the two scales problem. We assume O(4) — or O(2) — critical behaviour and we use this
assumption to fix a dependence between am, and L, in our Runl and Run2 so as to fix the
second scaling variable in Eq. (@) and reduce the problem to a one scale problem: in this
case the only assumption is O(4) itself. This allows us to test whether O(4) is consistent or
not with data without any further approximation.

We fixed am,L¥ = const with y, = 2.49 that is the value expected for O(4) and O(2)
critical behavior, with const = 74.7 for our Runl and const = 149.4 for Run2. The following

scaling formulas should hold (see Eq.s (@) and ([{)):

Cy(r, L) — Cy = LY & (TLY") (45)
Xm(7_> LS) = LZ/V(I)X (TLi/V) (46)

and in particular the peaks of the specific heat and y,, should scale as Eq.s (I0).

The subtraction of the non critical part Cy for the specific heat is needed. In principle
it can be obtained as a parameter from the fit to the maxima of the specific heat. However
since we also have data at (’s different from the pseudocritical coupling, we were able to
perform a direct measurement of this quantity. Appendix [Bl reports the details of the study
of the background for Cy. Our final estimate for the background is Cy(5) = 0.400(43) —
0.0663(83)3. Note that the § dependence is very weak and assuming a constant value for
the background Cj does not modify the following analysis. No dependence of Cy on am, is
observed.

For the susceptibility of the chiral condensate Y,,, for the moment we do not operate any
bakground subtraction.

The measured peak values for the subtracted specific heat Cy — Cy and chiral condensate
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FIG. 5: Specific heat (top) and y,, (bottom) peak value for Runl (left) and for Run2 (right),
divided by the appropriate powers of Ly (Eq.s EGHIH) to give a constant. Both the O(4) and O(2)
critical behaviors are displayed. Notice that for the case of x,, the ratio v/v have almost the same

numerical value so that the two curves are almost indistinguishable.

susceptibility x,, for Runl and Run2 are shown in Fig. B They are evaluated on the curve
obtained by reweighting. The figure shows the peak values of susceptibilities rescaled by the
appropriate power of the spatial lattice size Eq. ([0). If the scaling laws ([0) would hold,
the displayed quantity should be a constant. Visibly this is not the case.

The O(4) and O(2) critical behavior is clearly in contradiction with the lattice observation.
In particular O(4) and O(2) scaling predicts no singular behavior in the Ly — oo limit for
the specific heat as the critical exponent « is negative. This means that as L, is increased,
the singular part of C'y, should decrease with volume, i.e. that the specific heat should not
grow which is in clear contrast with the data. Also for the chiral condensate susceptibility
Xm the predicted exponents fail to reproduce lattice data. In either case the x?/d.o.f. of the

fit with a constant function excludes the behavior of scaling law ([Il). The full scaling laws
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FIG. 6: Scaling of the specific heat (top) and x;, (bottom) for Runl (left) and for Run2 (right),

see Eq.s () and ([@). The curves are obtained by reweighting.

Eq.s ([d) and (@) were also studied (see Fig.(d)). The horizontal scale was obtained by fitting
the pseudocritical temperature as described above. As one can expect from the previous
discussion, data don’t scale according to the predicted laws.

Similar figures are obtained assuming O(2) symmetry.

C. Scaling at Ly, — >

A further scaling test can be done supposing that the lattice size is much larger that
all other relevant physical lengths. In such a case one expects that the system show the
same behavior of an infinite system. The scaling laws expected in this case are those of
Eq.s (IH) and ([@). These equations predict no dependence on the parameter Lg. This is

the same assumption used in previous scaling analyses of the chiral transition [10, [11, [12].
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FIG. 7: Specific heat (top) and x,, (bottom) peak scaling for O(4) (left) and first order (right).

The alternative possibility, illustrated in section [ is to keep 7LY" (i.e. ¢/(aLy)) fixed
thus remaining with the scaling equations Eq.s ([d) and (20). Physically this means that
the correlation length ¢ is not small compared to L, which is certainly true in the vicinity
of the critical point.

These scaling laws are only expected to hold for large values of am,L¥» and small masses.

The difference between the two alternatives is only visible by considering the width of
the susceptibilities peaks, the heights having the same behavior (see Eq.s(I7)).

We have thus first performed the analysis of the scaling of the maxima of the specific
heat Cy and x,,.

We have tested the different second order critical behaviors compatible with the scenario
of Ref. [2], namely O(4), O(2), Mean Field and first order. The peak value of the specific
heat and of y,, divided by the appropriate power of the quark mass should be a constant.
These ratios are shown in Fig.([d) both for O(4) and first order. The figure shows also the

confidence region from a fit with a constant value together with the corresponding x?/d.o.f.
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FIG. 8: Comparison of specific heat (left) and x., (right) scaling for O(4).
Eqd @ (bottom).

Eq[@ Ed (top) and

From the values of the y?/d.o.f. it is easily seen that the second order critical behavior is
not compatible with data. It must be noticed that, although the validity region of the scaling
law is not known a priori, so that the upper mass limit for the fits is somewhat arbitrary, if
we further restrict the mass region, the x?/d.o.f. for the Cy fits tend to increase. We stress
that also in previous studies [L0, [11, 12] the values found for the susceptibility peaks were
not compatible with the critical indexes of O(4), O(2) and Mean Field. On the contrary the
first order behavior looks compatible with data (even if the x?/d.o.f. is ~ 2) for the specific
heat. We will discuss the scaling of ,, in Sect VDI

The scaling of susceptibilities at all § values can also be investigated. The situation is
depicted in Fig. B for O(4): all the curves should coincide within errors if there were O(4)
scaling. Similar features are observed for O(2) and Mean Field. No scaling is observed: this
is clearly the case for the maxima of the susceptibilities as discussed above, but it is also

true for the width of these curves. The analogous figure using first order indexes is shown
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FIG. 9: Comparison of specific heat (top) and x,, (bottom) scaling for first order. Eq[I9 and 20

in Fig. @ Scaling is observed for the specific heat in the form Eq.s (IJ) and ([20) and not in
the form ([H) and (Id), which does not describe the widths of the peaks. Again for x,, we
postpone the discussion to Sect VDI
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FIG. 10: Comparison between X s (left) and x,, (right) for amg, = 0.01335 and L, = 16, 32.

Runs with higher values of the masses (am, > 0.075) do not obey the scaling laws. The
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one with L, = 16 and am, = 0.01335, which should coincide with the Ly = 32 at the same
bare mass, in case of scaling Eq.s () and ([8) is instead different (see Fig. [[). For scaling
Eq.s ([@) and 0), the maximum should be the same, and the widths should differ by a
factor of 8, and this is not the case. We have carefully checked the stability of the curves
obtained by reweighting against variations of the statistics, e.g. by discarding single data
points from the analysis. This lack of scaling can be interpreted as due to the small value
(4.5) of the parameter aLsm,, invalidating the limit bringing to Eq.s ([H), (I8), () and
@0). A similar effect could be responsible for the observed increase of the peak with the

volume observed in previous studies [L1].

A more careful study of this effect will be done in the future.

D. Magnetic equation of state

As a further test of scaling we check the equation of state Eq. (29)). No scaling whatsoever
is observed, neither O(4)-O(2) nor first order, if the raw measured data are introduced in

Eq.@9) (see Figl). Indeed as (1)¢) is different from 0 at large 3 a subtraction is needed:
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FIG. 11: Magnetic equation of state using non subtracted data for O(4) (left) and first order

(right).

the critical part of the chiral condensate has to be zero far above the critical region. A
tentative way to understand the non critical background can be to assume it equal to the

value (1)) of (1)) at 3 = co. This can be computed analytically and numerically on the
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flat configuration U, = 1. The result is

- 3 amy

() oo (amy) =

(47)

s

L3Ly 4, i i (@mg)? + sy 5(5in £75)2 + (i 575975)°
which is almost a linear function in the mass range am, < 0.1.

We then plot the subtracted value (Yv), = (b)) — (1)), rescaled as (Yih),/(am,)"/°
versus 7(am,) Y to test the scaling Eq. (Z9). Fig. [[2 shows the result for O(4) (similar
figures being obtained with O(2) and mean field). Visibly O(4) scaling is not obeyed. An
analogous investigation has been performed in Ref. [12], without the subtraction of the
f = oo term: also in that case results were in disagreement with O(4) scaling.

An alternative procedure is to subtract for each (am,, Ls) the value at the largest mea-
sured 3. The result is consistent with Fig. [ A third possibility is to impose scaling at
7 = 0 and look if it is obeyed at 7 # 0. The result is shown in Fig. [3 and again there is no
scaling.

If the analysis of [2] is correct, our results, which exclude a second order critical behavior,
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FIG. 12: Equation of state for O(4), obtained by subtraction of (1)v) at 3 = oo.
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FIG. 13: Equation of state for O(4), obtained by imposing scaling at 7 = 0.

should then imply a first order chiral transition.

As a test of this possibility we have repeated the scaling analysis of the equation of state
using first order critical indexes: the three procedures described above are consistent with
each other and the result is shown in Fig. [[4l A good scaling is observed.

We can investigate the consequence of the subtraction needed to isolate the critical part
of (1p1h) on the scaling of x. If (V1)) — (Y1))os = aml/° F(7/amy/*¥+) by differentiating with
respect to am, at fixed temperature we get

0 - 1 1
<¢¢>oo — gam;/és—lF . V_yflam;/cg—l(T/amé/l/yh)F/ (48)

Xm = dam,

Keeping in mind 1/6 = (d — yn)/yn, v = 2yn — d)/y; and v = 1/y, we find, at 7 =0

i (s = G bh ) = $0) (19

dam,

The quantity which scales is not am)/*¥x,, but a term am)/*» (1)) /0(am,) must be

added to it to get scaling. The subtraction of (1)), due to the explicit breaking of chiral
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symmetry at am, # 0, implies a subtraction for y,, (which in the mass range of interest is
almost constant).

This suggests to repeat the test of scaling for y,, (Fig.s B and B) by introducing a
subtraction by a constant to be determined. The content of Fig. [0 instead stays unchanged
since the curves refer to the same value of the mass.

The best fit to determine the background is done by requesting scaling for the peaks of
Xm- the result is shown in Fig.s Bl and [l For O(4) —and O(2)— no scaling is obtained.
A reasonable scaling results for first order. The corresponding modified scaling at all §’s is
shown in Fig.s bll and

We notice that, due to the dependence of the temperature 7" on am, and not only on 3 the
definition of (7)) = %Lmzkp and x,, = 8;17“22 r must be revised, resulting in a combination
of several terms analogous to what happens for the specific heat.

Analogously to what has been done for the specific heat, we have not refined consequently

our analysis. Our investigation is exploratory: our L; is not big enough, our action is not
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FIG. 14: Equation of state for first order.
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improved. We will extensively use the correct definitions in the planned improved version

of this investigation.

E. Metastabilities

A first order chiral transition implies first order also at m # 0 and this should be visible
in time histories. Metastable states should be present and should be visible as double peak
structures in the histograms of distributions of the value of observables for large enough

volumes. Although the results for scaling presented in the previous sections indicate that
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our volumes are not large enough, we have analyzed the probability distribution function of

a number of observables, in particular of the spatial plaquettes. The results are shown in

Fig. M3 As in previous works [, [L1] no convincing metastability appears.

To estimate the probability distribution function (PDF) from a given finite data set a

non-zero width of the integration region should be chosen. We assume for the width a

value given by one hundredth of the difference between the largest and smallest entry in our

dataset. Errors are estimated using the bootstrap technique.
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V. DISCUSSION AND CONCLUSIONS

o 50 100 150 200 250

condensate shows a similar

The study of the nature of the chiral transition of Ny = 2 QCD is of fundamental

importance: a second order phase transition would mean crossover at m # 0 and also at
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finite chemical potential, implying the presence of a tricritical point in the T" — p plane
detectable by heavy ion experiments; a first order phase transition would drastically change
this scenario. Moreover this is relevant to understanding what confined and deconfined really
means in Nature, i.e. if they are two different phases of matter corresponding to different
realizations of some symmetry with an order parameter, or are connected by a crossover.

Previous studies on the subject did not come to a definite conclusion, mainly because of
the huge computer power required. We have approached the problem by dedicating a big
amount of computer power and by proposing a novel strategy for the scaling study around
the chiral critical point. In particular we have developed a scaling study which assumes the
critical indexes of the expected second order universality class (O(4) or O(2) according to
the analysis of Ref. [2]) to reduce to a one scale problem without any further assumption.
In this way we have been able to definitively rule out the possibility of O(4) or O(2) critical
indexes.

We have introduced the mass dependence of the reduced temperature 7 (Eq. B3)), which
was neglected in previous works.

We have then analyzed our data to test the scaling as done in previous papers, assuming
to be already in the thermodynamical limit (Eq. I3 and [[@). The am, dependence of the
pseudocritical 5 can not discriminate between O(4), O(2) and first order. However the
behavior of the peak of both the specific heat and of the chiral susceptibility definitely
excludes O(4) and O(2), but are qualitatively consistent with first order (Fig. [ and []).

As for the shape of the critical peaks again O(4) and O(2) are definitely ruled out. The
dependence of the width on L, shows that the thermodynamic limit is not reached. Instead
a scaling at L/ fixed agrees with first order, and again definitely excludes O(4) and O(2).

The magnetic equation of state is also nicely compatible with first order.

No clear signal of metastability, except possibly some hint, is observed.

In conclusion in Ny = 2 QCD the chiral phase transition is not in the universality class
of O(4). Data strongly indicate a first order phase transition. Further study is needed to
put this statement on a firmer basis. First we are planning a similar analysis with improved
action and L; = 6. A consistency check will also be the study of the 1’ mass at the deconfining

transition, in accordance with the analysis of [2], and we are also working at it.
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APPENDIX A: MONTE CARLO PARAMETERS AND RAW DATA

In this appendix we report the details of our numerical results. Time histories of the
observables are also available at request.

In the early stages of the computations some of the susceptibilities were not measured.
Blank entries in the following tables refer to missing data.

In some previous report the data for the plaquette susceptibilities were defined with an

extra factor of 1/4. Below we have eliminated it in agreement with definition Eq. (B2) to (B0).

conn

¢onm has been measured only at the § value nearest to the

The connected component x
critical coupling (except for the run with L; = 24, am, = 0.04444).
TABLE IV: Mean value of plaquettes, chiral condensate and energy density from MC simulation.

The number of thermalized trajectories is also shown together with the extimated autocorrelation

time (for Py and (1v))

6 |# Traj-| PO' | PT | <1/}¢> | <¢DO¢> |Tint (PO') |Tint (<¢¢>)
L= Ls=12 am,=0.153518

5.3 | 1300 ]0.47880(16) | 0.47893(16) [1.07450(60) — 77(2.4) [ 1.47(20)
5.325 | 1300 | 0.48578(17) | 0.48601(17) |1.04638(59) — 73(2.2) | 1.71(26)
535 | 1300 | 0.49337(21) | 0.49363(20) [1.01300(79) — 10(3.7) | 3.90(87)
5.375 | 2930 | 0.50082(12) | 0.50130(13) [0.97909(55)[0.72133(24)] 9.2(2.0) | 3.71(53)
5.375 | 1250 | 0.50147(15) | 0.50177(15) |0.97683(56) —  [6.0(L.7) | 1.91(31)
5.3875 | 2860 | 0.50637(16) | 0.50689(16) |0.95072(81)]0.72657(24)] 12(3.2) | 6.4(1.2)
5.3875 | 1200 | 0.50653(30) | 0.50711(32) | 0.9497(20) —  [18(9.3) | 15(6.9)
54 | 2920 |0.51129(16) | 0.51196(18) | 0.9233(11) [0.73140(25)] 9.7(2.2) | 8.3(1.8)
54 | 1200 |0.51041(27) | 0.51105(34) | 0.9275(2 —  [13(5.9) [ 16(7.7)
5.40625] 2890 | 0.51494(30) | 0.51576(36) | 0.8990(26) [0.73594(34)] 32(14) | 33(14)
5.40625] 600 | 0.51464(37) | 0.51582(34) | 0.8986(3 — [ T4(89) | 16(10)
5.4125 | 2890 | 0.51762(50) | 0.51869(57) | 0.8796(43) [0.74062(55)] 72(46) | 77(51)
5.4125 | 1200 | 0.51955(36) | 0.52100(49) | 0.8635(3 — [ 22(12) | 36(25)
5.41875] 2900 | 0.52200(36) | 0.52357(40) | 0.8470(28) [0.74866(41)] 46(23) | 42(20)
5.41875] 840 | 0.52247(49) | 0.52400(53) | 0.8468(3 — [ 20(13) | 28(17)
5.425 | 2970 | 0.52508(18) | 0.52692(23) | 0.8255(17) |0.75432(29)] 13(3.5) | 19(6.3)
5.425 | 1200 | 0.52576(35) | 0.52774(37) | 0.8204(2 — [ 19(9.8) | 20(11)
5.43125| 2910 | 0.52802(19) | 0.52990(21) | 0.8063(15) |0.75839(24)| 17(5.4) | 16(5.2)
5.43125] 540 | 0.52952(58) | 0.53151(70) | 0.7917(6 — 40(44) | 66(90)
5.4375 | 1300 | 0.53152(17) | 0.53381(16) | 0.7782(1 — 8.2(2.6) | 8.6(2.8)
545 | 1300 | 0.53475(20) | 0.53730(22) | 0.7598(1 — 10(3.9) | 12(5.1)
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TABLE IV: (continued)

B |# Traj. Py Pr () (WD) |Tint (
5.475 | 1300 [0.54153(11) | 0.54411(13) ]0.72134(77) — 4.4(1.0)
5.5 1300 |0.54614(10) | 0.54917(11) [0.69862(54) — 4.7(1.1)
5.525 | 1350 |0.55052(10) [ 0.55340(11) [0.67937(54) — 4.19(95)
5.55 1350 ]0.554344(89)]0.557310(76)]0.66412(41) — 3.13(62)
5.575 | 1350 [0.558004(86)[0.560962(80)]0.65103(40) — 3.03(60)
5.6 1350 ]0.561446(72)]0.564575(86)]0.63826(36) — 2.32(41)
L=4 L,=16 am,=0.075000
5.3 670 ]0.48822(16) | 0.48859(20) | 0.8911(34) [ 0.7461(19) [ 7.1(2
5.33 | 4840 0.499282(83)[0.499991(91)[ 0.8124(14) [0.75303(77)] 12(2.
5.3325 | 3600 [ 0.50022(12) | 0.50106(13) | 0.8051(18) [0.75463(95)] 18(5
5.335 | 4000 [0.50164(13) | 0.50252(14) | 0.7903(18) [0.75743(89)] 19(5
5.3375 | 4000 |0.50321(12) | 0.50418(14) | 0.7779(20) ]0.75825(81)] 20(5.
5.34 | 4000 |0.50425(22) | 0.50530(24) | 0.7667(23) [0.76050(84)] 47(2
5.345 | 4000 [0.50778(20) | 0.50905(23) [ 0.7337(24) [0.76576(81)] 40(1
5.3475 ] 4000 [0.51042(22) | 0.51203(26) | 0.7059(24) ]0.77230(90)] 40(1
5.35 7130 [0.51126(18) [ 0.51291(21) | 0.6990(26) [0.77290(70)[ 40(1
5.3525 | 14800 | 0.51397(16) | 0.51585(19) | 0.6664(22) ]0.77862(49)] 69(1
5.355 | 4000 0 51614(35) [ 0.51826(41) [ 0.6446(42) [0.78217(90)] 85(5
5.3575 ] 3800 |0.51776(19) | 0.52004(23) | 0.6246(23) ]0.78642(86)] 36(1
5.36 | 13200 | 0.51941(13) | 0.52184(14) | 0.6061(17) [0.78904(46)] 52(1
5.365 | 4000 [0.52181(12) [ 0.52439(15) [ 0.5812(18) [0.79246(79)| 21(6.
5.37 | 4000 |0.52429(10) | 0.52714(12) | 0.5557(18) [0.79849(75)| 17(4.
5.38 | 3100 [0.527678(78)[0.530747(84)] 0.5235(15) [0.80205(84)] 9.9(2.
5.4 1200 ]0.532769(91)[ 0.53584(10) | 0.4894(24) | 0.8055(13) [ 5.1(1.
5.45 1300 ]0.542526(64)]0.545907(62)] 0.4296(15) [ 0.8120(11) |3.14(64)
5.5 1300 ]0.550574(49)]0.553907(47)] 0.3947(10) [0.81546(98)] 2.24(40)
5.6 775 10.564279(58)]0.567819(47)]0.35047(99)] 0.8180(15) [2.36(55)
L=4 Ls=20 amq—O 043030
5.28 250 10.48665(16) | 0.48735(25) | 0.8082(16) 4.7(2.
5.285 300 [0.48918(16) | 0.48984(14) | 0.7916(13) — 8.6(5.
5.29 250 ]0.49154(24) | 0.49189(25) | 0.7695(23) — 10(8.
5.295 250 10.49334(46) | 0.49418(54) | 0.7510(48) — 21(25
5.3 250 ]0.49526(28) | 0.49616(27) | 0.7276(56) — 13(12
5.305 | 8640 [0.498846(93)] 0.49999(10) [ 0.6983(11) [0.77044(10)] 36(9.
5.31 5366 [ 0.50211(15) [ 0.50351(17) | 0.6598(23) [0.77587(15)[ 44(1
5.3125 | 2758 10.50476(16) | 0.50649(18) | 0.6238(25) ]0.78178(20)] 27(1
5.315 | 8798 [0.50775(18) [ 0.50975(21) | 0.5830(30) [0.78810(29)] 69(2
5.3175 | 550 ]0.50932(43) [ 0.51142(41) [ 0.5661(45) [0.78906(47)[ 42(4
5.32 6178 [0.51268(16) [ 0.51516(18) [ 0.5144(26) [0.79808(20)] 43(1
5.325 200 ]0.51513(27) | 0.51791(36) | 0.4769(33) — 18(2
5.33 300 ]0.51894(17) | 0.52218(20) | 0.4298(30) — 7.8(5.
5.34 350 10.52239(26) | 0.52557(33) | 0.3933(43) — 19(17)
5.35 400 ]0.524922(98)] 0.52834(10) | 0.3677(15) — 4.3(1.

Li=4 Ls=32 am,=0.013350

524 | 350 [0.479565(70)]0.480086(31)] 0.7687(18) [ 0.7631(10) | 5.0(2.4
5.26 | 293 | 0.48804(10) | 0.48901(10) | 0.6841(22) | 0.7719(11) | I3(11)
5.27 | 1434 | 0.49642(25) | 0.49812(28) | 0.5523(40) |0.78850(48)| 78(74
5.2715 | 2323 | 0.50038(47) | 0.50252(52) | 0.4783(98) |0.79708(59)|190(220
5.272 | 6300 | 0.50173(22) | 0.50405(25) | 0.4539(47) |0.79952(33)| 144(87
5.2725 | 3790 | 0.50301(25) | 0.50548(29) | 0.4287(55) |0.80268(34)] 106(71
5.2728 | 3175 | 0.50422(18) | 0.50685(21) | 0.4019(42) |0.80561(27)] 90(60
5.2731 | 2605 | 0.50572(17) | 0.50854(20) | 0.3786(56) |0.80852(31)| 77(53)
5.27375] 1060 | 0.50511(34) | 0.50792(41) | 0.3859(65) |0.80829(42)|130(190)
5.275 | 494 [ 0.50761(24) | 0.51059(27) | 0.3389(68) |0.81228(65)| 40(47)




TABLE IV: (continued)

B # Traj. Py Pr () (VDoY) |Tint (Po)|Tint (1))
5.28 | 335 [0.511175(49)]0.514484(69)] 0.2679(12) [0.81864(63)] 3.7(1.5) | 8.1(5.0)
5.285 | 277 [ 0.51334(12) [ 0.51680(15) [ 0.2325(21) |0.82238(67)| 14(13) | 14(13)
520 | 290 [0.51485(13) | 0.51341(15) | 0.2007(19) [0.82267(54)| T7(17) | 13(12)
532 | 380 [0.522467(59)]0.526117(77)|0.14394(68)] 0.82835(42)| 4.2(1.8) | 9.9(6.0)
5.4 | 205 [0.537482(40[0.541084(38)[0.00339(20) [ 0.82098(44) [ 2.5(1.0) | 3.5(1.9)
Li=4 L,=12 amy=0.307036
53 T 850 [ 0.46398(13) [ 0.46803(13) [T.24637(48) [ 3.8(1.0) | 0.94(13)
5.325 350 10.47466(23) | 0.47442(23) [1.23297(71) — 3.0(1.2) | 1.11(26)
535 | 350 | 0.48129(26) | 0.48142(23) [1.21606(78)  [4.4(2.0) | 1.39(37)
5.375 | 350 | 0.48852(26) | 0.48357(31) [L198s2(72)|  [5.2(25) | 1.67(45)
5.3875 | 350 | 0.49244(40) | 0.49255(43) [L.I8S61(07)] [ 9.3(6.2) | 3.4(1.3)
54 | 350 | 0.49571(20) | 0.49575(33) [L.Is102(72)] | 7.0(4.1) | L45(37)
54125 | 350 | 0.40845(43) [ 0.49852(42) [L.17334(63)] T4(12) | 0.91(10)
5425 | 850 | 0.50247(23) | 0.50249(24) [1.16307(56)] | 8.6(3.5) | 2.87(67)
5.4375 | 850 | 0.50662(29) | 0.50682(29) [1.15084(62)] [ 15(8.3) | 3.49(91)
5.45 | 800 [0.51050(16) | 0.51001(13) [1.14039(55) 5.1(1.6) | 2.00(45)
5.475 | 3540 [ 0.51922(18) | 0.51976(21) [L.IL176(58)]0. 67391(17) 16(4.7) | 8.2(1.6)
5175 17750 [ 0.51906(26) [051934(29) [1.11220(79) 10(5.3) | 5.1(1.6)
54875 | 3530 _| 0.52352(17) | 0.52394(17) | 100638 (50)[0.67608(20)] 10(24) | GA(LI)
5.4875 | 700 | 0.52333(51) | 0.52363(57) | 1.0998(25) 53(17) | 26(19)
5.40375] 3300 | 0.52652(17) | 0.52721(17) |1.08530(60]]0.63075(23)] 13(3.5) | 6.9(1.2)
5.5 200 [ 0.52530(20) [ 0.52916(21) [LOT792(79) [0.65209(28)[ 10(27) | T.I(L.5)
5.5 | 600 | 0.52814(26) | 0.52902(28) | 1.0775(12) 6.6(2.8) | 9.8(L4)
5.50625] 3370 [0.53098(16) | 0.563192(19) |1.06766(83)]0.68686(30)] 12(3.0) | 10(2.2)
5.5125 | 3460 |0.53436(23) [ 0.53573(28) [ 1.0530(11) 0. 69200( 2)] 24(8.5) | 20(6.2)
5.5125 | 700 | 0.53450(41) [ 0.53582(54) | 1.0522(21) 19(13) | 24(17)
5.525 | 3550 | 0.53804(18) | 0.54074(19) [1.03237(50)[ 0.0085(16][ 23(7.0) | S.A(L.6]
5.525 | 700 | 0.54025(23) | 0.54216(24) |1.02766(30) [9.6(4.5) | 5.6(1.3)
5.5375 | 3430 [0.512020(02][0.514860(07)| 1.01047(33) [0.70273(16)[ 7.4(L.4) | 3.41(44)
5.5375 | 700 | 0.54369(16) | 0.54587(26) [L.01300(74) [5.5(2.0) | 53(1.9)
5.55_| 1010 | 0.54635(17) | 0.54504(22) [1.00GT7(57) [0.70557(20)[ 8.6(3.2) | 3.20(74)
555 | 700 [ 0.54622(17) | 0.54830(23) [1.00761(65) 5.4(1.0) | 4.2(1.2)
5.575 | 700 [ 0.55133(13) | 0.55365(16) [0.09023(37)  [4.2(1.3) | 1.69(30)
5.6 | 800 [0.555811(97)] 0.55827(12) [0.07634(36) 5.77(69) | 1.73(31)
Li=4 L;=16 am,=0.150000
5.3 [ 2050 [0.479369(57)[0.479526(69)] T.0705(14) ] 0.7156(10) [3.83(68)[ 12(4.2)
5.36 | 16640 [0.496833(32)]0.497128(34)]0.99318(58)[0.72174(33)[ 7.95(70) | 12(1.7)
5.38 | 13550 [0.503516(45)]0.503063(47)|0.06041(63)]0.72496(37)[ 10(1.1) | 15(2.4)
5.30 | 9000 [0.507333(76)]0.507820(82)[0.939T1(92)[0.72802(47)| 19(3.7) | 22(4.8)
5.4 110000 [0.511031(89)] 0.51270(10) [0.01145(37)[0.73379(45)| 26(5.6) | 30(7.0)
5.405 | 8550 [0.514155(98)] 0.51508(10) | 0.8973(10) [0.73680(53)| 26(5.9) | 28(7.3)
541 | 6200 [ 0.51756(18) [ 0.51875(20) | 0.8711(16) [0.74304(61)| 49(17) | 64(27)
5.415 | 8300 | 0.52114(12) | 0.52265(14) | 0.8458(11) [0.75012(48)| 33(10) | 42(13)
5.42 [ 12300 | 0.52368(11) [ 0.52543(13) [0.82691(95)]0.75409(39)] 40(9.4) 49(12)
5.425 | 14300 [0.526255(30)]0.528200(93)] 0.80812(78)[0.75326(36)| 31(5.7) | 37(7.7)
5.43 | 9000 [0.528533(79)[0.530666(38)[0.79081(77)[0.76213(39) | 21(4.1) | 25(5.4)
544 | 7300 [0.532536(72)]0.534865(36)]0.76518(94)0.76726(50)| 16(3.2) | 26(7.2)
5.46 | 7350 [0.537987(39)]0.540635(40]0.73047(74)[0.77395(45) 6.83(85) | 15(3.4)
5.47 | 1200 [0.540543(38)[0.543324(97) 0.7165(16) [0.77842(93)] 5.1(1.3) | 8.9(4.8)
548 | 1250 [0.542541(75)[0.545410(70)] 0.7047(16) | 0.7778(10) [4.20(99) | 11(5.4)
5.49 | 1200 [0.544427(63)[0.547232(66)| 0.6980(15) [0.78019(95)| 3.48(76) | 12(5.5)
5.5 | 1300 [0.546411(75)[0.549302(69)] 0.6877(16) [0.78193(90)| 4.14(96) | 9.0(4.7)
5.52 1 000 [0.549775(60)[0.552711(78)| 0.6736(14) [0.78312(08)| 3.08(75) | 8.6(4.5)
T,=1 T.=20 arn,=0.086060




TABLE IV: (continued)

B # Traj. Py Pr (1) (VDoY) | Tint (Po)|Tint (Y1)
5.3 | 400 [0.486532(83)] 0.48604(10) [0.92367(65)] [ 4.A(1.8) | 1.09(25)
532 | 350 [0.49252(12) [ 0.49281(12) [0.80110(68)  [5.4(2.8) | L.73(54)
534 | 750 10.50022(20) | 0.50092(20) | 0.8372(17) | T7(11) | 16(9.5)
5.345 | 750 ] 0.50303(23) [ 0.50394(23) | 0.8135(21) | | 26(20) | 23(16)
535 | 250 [0.50504(15) | 0.50600(17) [0.7830(25) | [4.7(2.7) | 11(9.3)
5.355 | 700 | 0.50821(20) | 0.50933(26) [ 0.7639(30) | T7(11) | 35031)
5.36 | 8140 [0.51208(17) | 0.51350(20) | 0.7305(19) [0.76815(25)| 76(29) | 77(29)
5.365 | 8565 | 0.51635(12) | 0.51820(13) | 0.6858(15) |0.77747(19)] 47(14) | 56(13)
537 | 5574 [0.51993(12) | 0.52223(13) | 0.6488(15) [0.78332(15)] 43(15) | 52(20)
5.375 | 800 | 0.52249(15) | 0.52486(17) | 0.6248(34) | | T4(7.7) | 54(60)
538 | 350 | 0.52401(20) | 0.52640(30) | 0.6104(30) | | 11(3.4) | 20(19)
5.385 | 300 | 0.52644(15) | 0.52018(22) | 0.5879(30) | | 74(4.7)| I5(15)
54 | 400 [0.53005(11) | 0.53410(10) [ 0.5493(11) | [6.1(3.1)| 8.3(5.2)
5.42 | 000 [0.536151(62)[0.539203(52)[0.51330051)]  [4.0(L.1) | 5.4(L7)
Li=4 Ls=32 amy=0.026700
5.26 149 10.48400(21) ] 0.48464(20) | 0.7814(24) ] 0.7605(10) | 10(11) 7.2(5.9)
528 | 650 [0.492092(63)]0.493055(77)] 0.7023(10) |0.76843(57)] 8.1(3.7) | 4.3(1.7)
5.285 378 [0.49588(13) ] 0.49716(14) | 0.6539(14) [0.77561(65)] 15(13) | 9.8(6.2)
5.29 1200 [ 0.50050(12) | 0.50216(15) | 0.5884(18) [0.78489(37)| 34(23) 32(21)
5.20T25] 3960 | 0.50398(18) | 0.50605(21) | 0.5209(33) [0.79314(34)| 98(61) | 98(62)
5.2925 | 3450 [0.504006(99)] 0.50616(11) [ 0.5301(16) |0.79310(24)| 24(3.2) | 24(5.4)
5.2025 | 3118 | 0.50426(36) [ 0.50635(41) | 0.5273(58) [0.70334(42) [ 230(2507] 210(220)
5.29375] 950 | 0.50641(12) | 0.50830(15) | 0.4896(22) [0.70804(42)] 15(7.0) | 19(11)
5.205 | 345 | 0.50041(13) | 0.51219(22) [ 0.4374(41) [0.80598(68)| 23(24) | 45(68)
5.3 465 [0.512593(80)]0.515578(86)] 0.3892(13) |0.81064(48)[ 8.8(5.0) | 11(7.1)
5.305 235 [0.515550(85)[0.518729(87)[ 0.3448(11) [0.81585(54)] 7.3(5.3) | 6.8(4.9)
531 | 300 [0.517129(79)] 0.52044(10) [ 0.3232(16) [0.81816(62)| 5.9(3.4) | 10(8.9)
5.32 | 265 [0.520284(41)]0.523703(41)]0.28780(81)] 0.82037(46)| 2.6(1.1) | 8.6(5.5)
530 | 285 [0.525526(40)]0.529020(39)[0.24220(75)]0.82483(47)] 2.36(90) | 7.4(4.9)
= T.=T6 a1, =0.013350
5267 ] 0600 [ 0.49225(24) [ 0.49343(28) [ 0.6246(34) [0.77948(55)] 112(49) | 66(22)
5.260 | 6350 | 0.49564(43) | 0.40725(54) | 0.5638(38) [0.78565(66)| 170(110)] 152(04)
5.271 | 6500 | 0.49997(47) | 0.50214(54) | 0.4872(93) [0.79538(71)] 110(57) | 112(59)
5.072 | 12400 | 0.50243(63) | 0.50480(72) | 0.434(13) [0.80179(71)|250( 140 240(140)
5.273 | 6800 [0.50188(69) | 0.50421(79) | 0.449(13) ]0.79947(79)[190(130)] 170(110)
5.274 | 9350 [ 0.50519(50) | 0.50795(58) | 0.388(12) [0.80678(64)| 180(100)] 200(120)
5.276 | 2700 [ 0.50718(46) | 0.51010(53) | 0.343(11) |0.81174(31)| 67(d2) | 72(49)
5.278 | 4200 | 0.50095(16) | 0.51318(19) | 0.2863(42) [0.81673(55)| 27(8.8) | 42(17)
528 | 4200 [0.51161(14) | 0.51496(15) | 0.2562(31) [0.81963(53)| 30(10) | 35(13)
L=4 L,=24 amy=0.044440
53 ] 1310 [ 0.49537(14) [ 0-49619(16) | 0.7421(17) [0.76363(20)[ 22(11) | 20(10)
5.31 | 2200 [0.50213(20) | 0.50355(23) | 0.6645(29) [0.77583(24)| 41(22) | 42(23)
5.312 | 1990 1 0.50368(24) | 0.50518(27) | 0.6465(35) [0.77825(24)| 56(38) | 57(38)
5.314 | 2620 [0.50495(17) | 0.50663(18) | 0.6310(27) 0.78066(26)| 38(18) 42(21)
5.316 | 2520 | 0.50750(38) | 0.50045(44) | 0.5053(63) [0.78634(49) | T50(1507] T60(170)
5.318 | 2600 | 0.51024(22) | 0.51249(25) | 0.5554(35) [0.79230(30)] 59(36) | 63(39)
532 | 2260 [0.51123(20) | 0.51360(31) | 0.5430(43) [0.79402(31)| 89(71) | 92(75)
5.325 | 1470 | 0.51599(17) | 0.51879(18) | 0.4773(28) [0.80338(18)] 28(15) | 30(17)
533 | 1420 | 0.51875(10) | 0.52173(10) | 0.4426(15) [0.80829(15)] T7(7.7) | 20(9.5)
5.34 | 1000 [0.522071(90)] 0.52527(10) | 0.4049(16) [0.81235(17)| 13(6.2) | _26(16)
535 | 000 [0.525410(69)[0.528704(74)[0.37128(93)]0.81652(17)| 7.4(2.7) | 11(4.9)
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TABLE V: Raw data from MC simulation of susceptibilities entering the specific heat.

ﬁ |# Traj-| Xe,o0 | Xe,oT | Xe, 77 | Xe,f | Xe,o | Xe,r
L= L,=12 am,=0.153518
5.3 [ 1300 [0.0584(40)[0.0407(40)]0.0619(44)] — — —
5.325 | 1300 ]0.0570(38)]0.0375(35)]0.0559(38)] — — —
5.35 | 1300 ]0.0638(45)]0.0416(38)[0.0579(36)] — —
5.375 | 2930 |0.0598(27)]0.0426(28)[0.0625(32) | 1.186(30)| 0.0149(57)|0.0432(60)
5.375 | 1250 |0.0530(36)]0.0321(31)[0.051034)] — [ — | — |
5.3875 | 2860 |0.0746(43)]0.0588(44)|0.0817(46)| T.174(30)] 0.0424(78)[0.0741(38)
5.3875 | 1200 |0.0711(86)[0.0577(90)]0.0821(96)] — [ —
54 | 2920 [0.0877(52)]0.0732(58)]0.0962(61)| 1.316(34)] 0.086(10) | 0.121(12)
54 | 1200 [0.0785(78)[0.0626(95)] 0.084(10) | — [ —
5.40625] 2890 [0.1094(83)[ 0.100(10) | 0.120(12) |1.508(41)] 0.160(19) | 0.209(25)
5.40625] 600 | 0.067(10) | 0.050(10) [0.0705(97) — | — —
5.4125 | 2800 | 0.134(13) | 0.124(14) | 0.155(16) [1.640(52)] 0.213(31) | 0.269(34)
5.4125 | 1200 |0.0848(90)] 0.069(10) | 0.095(12) | — | — —
5.41875] 2900 [0.1128(85)] 0.100(10) | 0.125(11) |1.477(42)] 0.155(21) | 0.207(24)
5.41875] 840 |0.105(13) |0.090(13) | 0.112(15) | — [ —
5.425 | 2970 ]0.0926(55)[0.0812(63)]0.1089(73)| 1.370(36)] 0.126(13) | 0.173(17)
5.425 | 1200 ]0.0824(92)[0.0654(94)] 0.085(10) | — [ —
5.43125] 2910 |0.0811(49)[0.0662(49)]0.0899(56)] 1.221(32)] 0.0654(92)| 0.078(10)
5.43125] 540 |0.0614(75)][0.0483(96)] 0.069(11) | — —
5.4375 | 1300 |0.0521(36)[0.0344(34)[0.0532(34)| — — —
5.45 | 1300 |0.0579(44)[0.0420(48)[0.0622(61)]  — — —
5.475 | 1300 [0.0425(24)]0.0265(24)]0.0452(29)] — —
55 | 1300 [0.0391(21)]0.0227(18)]0.0393(22)]  — — —
5.525 | 1350 ]0.0379(19)[0.0222(17)]0.0415(21)] — —
5.55 | 1350 ]0.0338(16)[0.0172(13)]0.0327(15)] — —
5.575 | 1350 ]0.0320(16)[0.0152(11)]0.0287(13)] — —
5.6 | 1350 ]0.0300(14)[0.0159(11)]0.0328(14)] — — —
L= L,=16 amy=0.075000
53 | 670 [0.0627(64)[0.0427(63)]0.0618(68)] 2.09(47) [-0.027(64) [-0.019(34)
5.33 | 4840 [0.0732(33)]0.0573(33)]0.0808(36)] 2.03(20) [ 0.040(27) | 0.070(26]
5.3325 | 3600 |0.0835(51)]0.0678(55)]0.0911(60)] 2.36(26) | 0.051(31) | 0.069(32)
5.335 | 4000 [0.0939(53)]0.0784(57)]0.1042(62)] 2.26(22) [ 0.122(42) | 0.140(41)
5.3375 | 4000 |0.0790(52)]0.0660(58)]0.0942(65) 1.82(20) | 0.073(25) | 0.104(24)
5.34 4000 [0.114(10) [ 0.102(11) [ 0.130(11) [ 1.98(21) | 0.166(43) | 0.216(39)
5.345 | 4000 ]0.1090(82)[0.0980(96)] 0.126(10) | 1.82(19) | 0.105(33) | 0.137(35)
5.3475 | 4000 | 0.126(11) [ 0.120(13) [ 0.152(15) | 2.26(22) | 0.231(47) | 0.273(47)
5.35 | 7130 |0.1415(88)] 0.135(10) | 0.169(11) | 2.40(18) | 0.283(40) | 0.363(43)
5.3525 | 14800 |0.1549(90)] 0.150(10) | 0.186(11) | 2.40(13) | 0.257(28) | 0.335(35)
5.355 | 4000 | 0.152(14) [ 0.148(17) | 0.182(19) | 2.27(24) [ 0.263(57) | 0.321(63)
5.3575 | 3300 ]0.1086(78)[0.1002(38)] 0.129(10) | 1.94(21) | 0.182(40) | 0.213(36)
5.36 | 13200 [0.1161(63)]0.1079(71)[0.1372(78)] 1.93(10) | 0.105(24) | 0.243(27)
5.365 | 4000 [0.0806(62)]0.0706(72)]0.0978(84)| 1.74(16) | 0.104(30) | 0.156(32)
5.37 | 4000 ]0.0750(40)[0.0615(45)]0.0847(52)] 1.58(15) | 0.083(26) | 0.123(31)
5.38 | 3100 |0.0552(30)]0.0395(29)]0.0605(32)| 1.45(22) | 0.074(25) | 0.110(29)
5.4 | 1200 ]0.0483(32)[0.0323(30)]0.0512(35)] 1.43(29) |-0.053(47) | 0.038(32)
5.45 | 1300 ]0.0395(21)][0.0213(17)]0.0374(18)] 1.19(18) |-0.040(35) | 0.036(32)
55 | 1300 [0.0321(15)[0.0142(11)]0.0293(14)] 0.81(21) | 0.003(21) | 0.039(23)
56 | 775 |0.0264(18)[0.0125(14)]0.0285(14) 1.19(30) [-0.030(27) [-0.000(34)
Ti= L.=—20 a1m,—=0.023030
528 ] 250 [0.069(10) [ 0.057(16) [ 0.093(22) | — — —
5.285 | 300 |0.0531(76)]0.0307(78)]0.0479(74)] — — —
529 | 250 |0.071(11)]0.052(10) [0.073(11) | — —
5.295 | 250 | 0.114(46) [ 0.100(39) | 0.126(40) | — —
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TABLE V: (continued)

ﬁ # Traj. Xe, oo Xe,oT Xe, 1 Xe,f Xe,o Xe, T
53 | 250 [0.073(13) | 0.054(10) | 0.075(10) |  —
5.305 | 8640 [0.1101(55)]0.0982(60)]0.1256(67)|3.311(50)] 0.144(13) | 0.197(15)
531 | 5366 | 0.151(11) | 0.146(12) | 0.181(14) |3.383(66)] 0.246(28) | 0.316(30)
5.3125 | 2758 | 0.129(14) | 0.116(16) | 0.144(18) [3.056(37)] 0.195(36) | 0.252(44)
5.315 | 8798 | 0.195(17) | 0.196(19) | 0.239(22) |3.440(32)] 0.390(44) | 0.481(51)
5.3175 | 550 | 0.110(19) | 0.096(20) | 0.120(21) | 2.50(20) [-0.017(63)]-0.020(70)
5.32 | 6178 |0.177(13) [ 0.175(14) [ 0.213(16) [2.869(64)] 0.316(34) | 0.403(38)
5.325 | 200 ]0.0579(93)] 0.041(14) | 0.065(25) | — — —
5.33 | 300 [0.0603(85)[0.0460(92)] 0.067(12) | — — —
5.31 | 350 [0.0724(88)] 0.060(11) | 0.080(13) | — — —
5.35 | 400 [0.0444(57)[0.0262(49)]0.0462(48)] — —
Li= L,=32 am,=0.013350
524 | 350 [0.0639(67)[0.0455(78)]0.0642(93)] 10(1.4) [ 0.03(10) [ 0.133(31)
5.26 | 293 [0.0551(78)[0.0394(73)]0.0628(77)| 10(1.7) | 0.06(10) | 0.157(39)
5.27 | 1434 | 0.205(40) [ 0.195(43) | 0.226(47) [ 8.16(75) | 0.38(11) | 0.43(12)
5.2715 | 2323 | 0.46(11) | 0.50(13) | 0.59(14) |9.87(74) | 0.70(27) | 0.77(28)
5.272 | 6300 | 0.365(50) | 0.394(54) | 0.469(62) | 8.59(36) | 0.83(13) | 1.04(15)
5.2725 | 3790 | 0.371(60) | 0.398(63) | 0.471(78) | 8.17(43) | 0.83(16) | 0.97(19)
5.2728 | 3175 | 0.228(29) | 0.231(32) | 0.274(35) | 6.23(32) [ 0.423(33) | 0.498(92)
5.2731 | 2605 | 0.184(25) | 0.184(31) | 0.226(35) | 6.50(37) | 0.322(74) | 0.435(37)
5.27375] 1060 | 0.164(41) | 0.168(49) | 0.212(57) | 5.62(54) | 0.34(16) | 0.41(16)
5.275 | 494 [ 0.123(27) | 0.114(28) | 0.145(31) | 6.64(31) | 0.234(97) | 0.33(11)
528 | 335 [0.0479(55)[0.0318(56)]0.0517(56)] 3.95(68) [-0.002(53) | 0.119(65)
5.285 | 277 ]0.0597(93)] 0.050(10) | 0.080(12) | 3.79(59) | 0.067(85) | 0.085(68)
529 | 290 |0.065(14) | 0.055(14) | 0.080(19) | 2.22(34) | 0.057(50) | 0.093(77)
5.32 | 380 ]0.0567(50)]0.0369(58)]0.0591(71)] 1.80(29) [-0.006(37) | 0.019(35)
54 | 295 [0.0389(38)]0.0109(28)]0.0351(29)] 1.50(27) [-0.049(28) ] 0.015(29)
= L.-12 amg=0.307036
53 [ S50 [0.0468(29)[0.0243(25)]0.0447(30)] — —
5.325 | 350 [0.0577(73)]0.0342(59)]0.0552(57)]  — — —
5.35 | 350 ]0.0552(52)]0.0336(50)[0.0483(52)] — —
5.375 350 ]0.0483(59)]0.0290(60)]0.0545(64) — — —
5.3875 | 350 |0.069(12) [ 0.049(11) [0.067(11) | — — —
54 | 350 ]0.0495(71)[0.0323(75)] 0.058(10) | — — —
5.4125 | 350 ]0.0536(64)[0.0382(61)]0.0596(69)] — —
5425 | 850 |0.0611(51)]0.0423(51)]0.0647(60) —
5.4375 | 850 |0.0626(68)]0.0419(68)[0.0606(73) — —
545 | 800 [0.0422(29)[0.0250(27)[0.0453(29)] — —
5.475 | 3540 |0.0816(58)]0.0655(61)]0.0871(66)]0.791(19)]0 0633(90) 0.091(10)
5475 | 750 |0.0573(45)[0.0371(52)[0.0558(61)] — | —
54875 | 3530 [0.0960(59)[0.0817(58)[0.1031(62)|0.830(21]| 0.092(10] | 0.12I(10)
5.4875 | 700 | 0.084(10) [ 0.072(10) | 0.094(12) —
5.49375] 3390 |0.0889(57)[0.0747(56)]0.0957(56)]0.845(21)] 0.103(10) | 0.128(11)
5.5 | 2440 [0.0902(60)[0.0792(67) 0. 1025(78) [0.883(26) | 0.099(11) | 0.137(13)
55 | 600 [0.0652(65)]0.0482(73)]0.0655(76) —
5.50625] 3370 [0.0846(47)[0.0729(52)]0.0960(57)[0.895(24)]0.1103(93)] 0.143(10)
5.5125 | 3160 [0.0934(71)[0.0833(52)[0.1092(87) [0.877(26)| 0.121(14) | 0.159(15)
5.5125| 700 0.0703(30]0.0588(94)]0.0807(98) —
5.525 | 3550 |0.0693(46)[0.0546(48)[0.0720(50) 0.695(16)]0.0615(77)|0.0881(34)
5.525 | 700 ]0.0463(62)[0.0338(66)]0.0529(71) | | |
5.5375 | 3430 [0.0469(20)10.0322(18)[0.0510(21) [0.611(14][0.0227(35) [ 0.0475(37)
5.5375 | 700 ]0.0412(31)[0.0300(33)]0.0536(43) | | |
5.55_| 1010 [0.0451(33)[0.0324(37)[0.0568(51)[0.611(26)[0.0295(66)[0.0569(87)
5.55 | 700 ]0.0449(36)]0.0317(39)[0.0513(45) T — ]




TABLE V: (continued)

ﬁ # TI'aJ Xe,oo Xe,oT Xe, 1 Xe,f Xe,o Xe, T
5575 | 700 |0.0342(27)]0.0208(25)|0.0378(27)]
5.6 | S00 |0.0324(19)[0.0193(21)]0.0409(29)]  — — —
L= L,=16 am¢=0.150000
5.3 [ 2050 [0.0484(20) 00277(21) 0.0495(23)] 1.47(22) [ 0.015(31) | 0.049(23)
5.36_| 16640 |0.0610(12)]0.0421(11)]0.0620(12)|1.235(65)] 0.019(10) | 0.043(10)
5.38 | 13550 |0.0702(17)[0.0519(17)]0.0721(18)[1.260(73)] 0.038(14) | 0.065(13)
5.39 | 9000 ]0.0766(29)[0.0606(30)]0.0831(33)[1.345(91)] 0.074(17) | 0.090(19)
5.4 | 10000 |0.0860(34)[0.0722(38)]0.0969(43)| T.410(38)| 0.072(16) | 0.120(17)
5.405 | 8550 |0.0887(37)]0.0738(38)]0.0964(41)[ 1.57(11) [ 0.098(19) | 0.149(22)
5.41 | 6200 |0.1156(86)]0.1066(97)] 0.135(10) | 1.52(13) | 0.174(28) | 0.215(35)
5.415 | 8800 |0.1012(62)]0.0918(66)]0.1106(73)] 1.332(98)] 0.127(21) | 0.187(23)
5.42 | 12300 [0.1043(51)]0.0958(60)]0.1250(69)| 1.289(31)| 0.152(16) | 0.207(19)
5.425 | 14300 ]0.0880(33)]0.0758(37)]0.1002(41)| 1.314(72)] 0.126(14) | 0.171(16)
5.43 | 9000 ]0.0759(30)[0.0622(31)]0.0841(35)[1.205(S1)] 0.089(15) | 0.120(17)
544 | 7300 ]0.0663(28)[0.0523(31)]0.0739(35) 1.21(10) | 0.065(16) | 0.097(18)
5.46 | 7350 ]0.0470(13)[0.0313(12)]0.0498(13)[0.972(31)] 0.033(13) | 0.062(14)
5.47 | 1200 |0.0440(27)[0.0285(24)]0.0463(28)] 0.67(13) | 0.046(29) | 0.039(30)
5.48 | 1250 ]0.0409(23)[0.0266(22)[0.0449(27)| 0.88(16) | 0.001(34) | 0.027(28)
5.49 | 1200 [0.0355(10)][0.0200(17)]0.0391(20)] 0.73(12) [ 0.030(34) | 0.026(33)
5.5 | 1300 |0.0426(23)]0.0261(20)]0.0441(22)] 0.66(12) [-0.012(25) | 0.016(24)
5.52 | 900 [0.0334(21)]0.0157(17)]0.0324(22)] 0.56(13) [-0.015(21) | 0.002(22)
Li= L,=20 am,=0.086060
53 T 400 [0.0383(39)[0.0230(34)[0.0477(53)] — —
532 | 350 ]0.0552(61)[0.0299(51)]0.0483(50)] — —
534 | 750 |0.086(11) [ 0.067(12) [0.085(12) | — — —
5.345 | 750 ]0.079(10) | 0.063(11) | 0.085(13) — —
5.35 | 250 ]0.0638(88)]0.0444(84)[0.0632(90)] — —
5.355 | 700 | 0.078(12) [ 0.069(16) | 0.096(18) | —
536 | 8140 [ 0.166(12) | 0.160(14) | 0.194(15) [2ATS(59) 0.047(27) | 0.052(31)
5.365 | 8565 |0.1316(32)]0.1235(94)] 0.154(10) |1.943(50)] 0.050(18) | 0.056(21
5.37 | 5574 [0.1054(88)[0.0959(38)]0.1234(98)| 1.670(40)| -0.013(14) |-0.012(16)
5.375 | 800 ]0.0667(83)[0.0506(39)]0.0710(91)] — — —
5.38 350 ]0.0696(98)] 0.054(10) [ 0.081(14) — — —
5.385 | 300 ]0.0490(73)[0.0396(36)] 0.067(10) | — —
54 | 400 ]0.0435(53)[0.0255(40)]0.0389(40)] — —
542 | 900 ]0.0400(27)]0.0209(22)[0.0366(24)] — —
L=4 L,=32 amy=0.026700
526 [ 149 [0.099(27) [0.076(25) | 0.092(23) [ 5.6(1.2) | -0.T1(14) | <0.10(T3)
528 | 650 [0.0643(59)]0.0472(75)]0.0706(37)] 5.65(78) | 0.039(55) | 0.123(64)
5.285 | 378 | 0.081(23) | 0.066(23) | 0.090(26) | 4.71(62) | 0.034(77) | 0.106(79)
5.29 | 1200 |0.110(17) | 0.100(18) | 0.133(22) | 4.35(37) | 0.219(54) | 0.286(51)
5.20125] 3960 | 0.253(40) | 0.261(44) | 0.312(50) | 5.46(29) | 0.58(12) | 0.69(13)
5.2925 | 3450 | 0.286(21) | 0.297(25) | 0.351(28) | 5.43(30) | 0.589(65) | 0.680(79)
5.2925 | 3118 |0.303(92) | 0.31(10) | 0.37(12) | 5.74(41) | 0.65(26) | 0.82(30)
5.20375] 950 | 0.176(34) | 0.175(35) | 0.215(39) | 4.56(45) | 0.35(11) | 0.41(12)
5205 | 345 |0.102(19) | 0.082(22) [ 0.100(25) | 4.13(81) | 0.127(73) | 0.195(32)
5.3 | 465 ]0.0706(85)[0.0512(35)]0.0725(96)] 3.44(36) |-0.031(53) | 0.012(45)
5.305 | 235 |0.0482(69)]0.0372(81)]0.0625(95)] 2.16(36) |-0.030(48) | 0.019(58)
5.31 | 300 ]0.0666(90)]0.0431(96)]0.0552(39)] 3.02(51) |-0.024(50) | 0.046(47)
5.32 | 265 ]0.0360(37)]0.0204(29)[0.0363(34)| 2.04(32) | 0.015(47) | 0.036(47)
534 | 285 ]0.0364(33)[0.0163(27)]0.0355(30)] 1.96(37) |-0.091(44) ] 0.029(38)
= L,=16 mg=0.013350
5.267 | 9600 ]0.148(15) [ 0.141(17) [ 0.175(20) [ 9.75(31) [ 0.259(53) [ 0.327(64)
5.260 | 6350 | 0.242(45) | 0.246(49) | 0.204(56) | 9.06(37) | 0.41(11) | 0.52(13)




TABLE VI: Raw data from MC simulation for chiral condensate susceptibility and termal suscep-

tibility.

TABLE V: (continued)

ﬁ # Traj. Xe,oc0 Xe,oT Xe, 1 Xe,f Xe,o Xe,

5.271 | 6500 | 0.310(40) | 0.323(43) | 0.380(49) | 7.81(35) | 0.63(11) | 0.72(13)
5.272 | 12400 | 0.445(52) | 0.478(60) | 0.558(67) | 8.40(29) | 0.95(13) | 1.13(14)
5.273 | 6300 | 0.377(48) | 0.401(50) | 0.470(56) | 7.74(34) | 0.75(12) | 0.89(13)
5.274 | 9350 | 0.313(49) | 0.328(59) [ 0.386(68) | 7.16(31) [-0.111(90) | -0.13(10)
5.276 | 2700 | 0.193(34) | 0.195(39) | 0.235(44) [ 5.47(33) | 0.301(72) | 0.404(31)
5.278 | 4200 ]0.1073(73)][0.0958(87)]0.1236(97)] 4.20(19) | 0.114(26) | 0.185(29)
5.28 | 4200 ]0.0819(78)[0.0669(82)]0.0904(87)] 3.88(20) | 0.089(27) | 0.136(28)

= L= 1, =0.044440

5.3 [ 1310 [0.108(13) [ 0.095(16) [ 0.124(18) [ 3.13(12) [ 0.138(26) | 0.166(32)
5.31 | 2200 | 0.171(17) | 0.164(19) | 0.198(21) | 3.46(11) | 0.304(41) | 0.374(46)
5.312 | 1990 | 0.174(22) [ 0.171(26) | 0.211(29) | 3.24(10) | 0.306(55) | 0.372(61)
5.314 | 2620 | 0.156(21) | 0.150(23) | 0.187(25) | 3.35(11) | 0.295(56) | 0.379(63)
5.316 | 2520 | 0.187(39) | 0.187(41) | 0.230(49) | 3.37(18) | 0.38(12) | 0.48(11)
5.318 | 2600 | 0.170(18) | 0.165(21) | 0.109(24) | 3.10(10) | 0.333(49) | 0.411(55)
5.32 | 2260 | 0.184(28) | 0.183(32) | 0.225(32) | 2.07(11) [ 0.335(63) | 0.409(65)
5.325 | 1470 | 0.128(19) | 0.117(20) | 0.143(21) |2.346(92)] 0.189(45) | 0.243(51)
5.33 | 1420 ]0.0760(75)[0.0595(31)]0.0824(82)] 1.883(75)] 0.043(14) | 0.084(16)
5.34 | 1000 ]0.0579(74)[0.0419(78)]0.0615(86)|1.621(71)] 0.038(12) | 0.070(16)
5.35 | 900 [0.0556(42)]0.0365(41)]0.0561(43)|1.456(68)] 0.018(11) | 0.060(12)

B I#Trai]l x¥ | xio | xer | iy
—7 =12 amg=0.153518

53 [ 1300 [0.859(32) [-0.183(21) [ -0.204(21) |
5.325 | 1300 | 0.806(31) | -0.180(20) | -0.173(18) | —
5.35 | 1300 | 0.863(37) |-0.238(23) [ 0.227(22) |
5.375 | 2930 | 0.947(27) | -0.238(15) | -0.241(17) |-0.077(42)
5.375 | 1250 | 0.726(27) | -0.167(16) | -0.157(15) | — |
5.3875 | 2860 | 1.077(43) | -0.336(27) | -0.362(27) |-0.302(53)]
5.3875 | 1200 | LI7(11) | 0.353(62) | -0.397(69) | — |
54 | 2920 | 1.396(67) | -0.468(35) | -0.510(43) |-0.639(31)
54 | 1200 | L117(91) | -0.368(54) | -0.402(64) |
5.40625] 2390 | 1.05(17) | -0.730(77) | -0.810(95) | -1.37(18)
5.40625] 600 | 1.23(13) |-0.389(74) [ -0.379(71) |
5.4125 | 2890 | 2.31(22) | -0.91(10) | -1.00(12) |-1.81(23)
5.4125 | 1200 | 1.43(20) | -0.504(89) | -0.57(10) —
5.41875] 2900 | 1.87(13) | -0.730(69) | -0.790(81) | -1.35(16)
5.41875] 840 | L5L(17) | -0.62(11) | -0.67(12) —
5.425 | 2970 | 1.585(97) | -0.588(45) | -0.669(52) | -1.09(12)
5.425 | 1200 | L.34(14) |-0.497(73) | 0.535(75) | —
5.43125] 2010 | 1.316(75) | -0.296(31) | -0.324(35) |-0.697(81)
5.43125] 540 | 0.99(17) |-0.350(83) | -0.39(10) —
5.4375 | 1300 | 0.709(42) [ -0.230(23) | 0.245(23) |
545 | 1300 | 0.859(67) | -0.291(32) | -0.324(38) |
5.475 | 1300 | 0.486(30) [ -0.157(15) | -0.178(17) | —
55 | 1300 | 0.384(16) |-0.1226(99)] -0.141(11) |
5.525 | 1350 | 0.368(15) |-0.1287(90)|-0.1423(96)]
555 | 1350 | 0.297(12) [-0.0956(76)]-0.1037(70)] —
5.575 | 1350 | 0.283(12) |-0.0885(74)[-0.0909(69)]
5.6 | 1350 |0.2442(92)]-0.0791(55)|-0.0944(61)] —

39




TABLE VI: (continued)

disc

| B [#Taji] x® | xto | xtr | xep |
L,=1 T.=16 am,=0.075000
53 | 670 | 1.61(34) | -0.25(13) | -0.30(17) [-0.82(61)
5.33 | 4840 | 1.82(21) | -0.381(58) | -0.425(60) [=0.20(27)
5.3325 | 3600 | 2.20(25) | -0.481(82) | -0.570(88) | -0.56(38)
5.335 | 4000 | 2.31(22) | -0.623(84) | -0.680(84) | -1.03(38)
5.3375 | 4000 | 2.79(32) | -0.619(85) | -0.596(76) | -1.20(34)
534 | 4000 | 3.89(37) | -1.09(12) | -1.24(13) |-L.77(39)
5.345 | 4000 | 4.05(37) | -LIL(12) | -L.14(12) |-1.81(43)
5.3475 | 4000 | 4.27(49) | -L.I13(15) | -1.23(15) | -2.74(54)
535 | 7130 | 5.56(43) | -1.48(15) | -1.67(16) | -3.65(51)
5.3525 | 14800 | 5.75(42) | -1.58(12) | -1.85(14) | -3.57(37)
5355 | 4000 | 5.24(58) | -1.53(10) | -1.67(20) | -3.25(6%)
5.3575 | 3800 | 3.74(39) | -0.99(12) | -1.07(12) |-2.26(43)
5.36 | 13200 | 4.29(32) | -1.162(97) | -1.35(10) | -2.60(29)
5.365 | 4000 | 2.39(29) | -0.69(11) | -0.77(12) |-1.33(27)
5.37 | 4000 | 2.26(24) | -0.606(77) | -0.743(91) | -1.06(31)
5.38 | 3100 | L.I6(12) |-0.318(43) [ -0.357(52) | -0.55(21)
5.4 | 1200 | 1.16(27) | -0.226(97) [ -0.294(32) | 0.00(35]
5.45 | 1300 [ 0.501(95) [ -0.116(40) |-0.184(43) | -0.09(24)
55 | 1300 | 0.233(73) | -0.065(31) | -0.008(40) [ =0.02(10)
56 | 775 |0.120(31) | -0.049(33) [ -0.060(25) | 0.17(13)
T,=1 L.=20 amy=0.043030
528 | 250 | 3.16(35) | -0.43(11) | -0.64(17) —
5.285 | 300 | 2.92(28) | -0.381(93) | -0.324(86) —
529 | 250 | 3.60(40) | -0.56(12) | -0.53(12) —
5.295 | 250 | 5.10(91) | -1.08(46) | -1.16(43) —
53 | 250 | 5.4(L.1) | -0.66(18) | -0.70(16) —
5.305 | 8640 | 5.27(24) | -1.109(72) | -1.227(80) | -2.25(17)
531 | 5366 | 7.57(61) | -1.75(16) | -1.96(19) | -3.95(41)
5.3125 | 2758 | 6.63(77) | -1.46(21) | -1.59(23) | -3.46(56)
5315 | 8708 | 11(1.0) | 2.62(28) | -2.98(32) | -6.65(73)
53175 | 550 | 4.70(52) | -1.07(20) | -1.16(22) | 0.38(80)
5.32 | 6178 | 10.26(39) | -2.37(21) | -2.67(24) | -5.55(55)
5.325 | 200 | 3.24(76) | -0.50(19) | -0.67(31) —
533 | 300 | 3.02(60) | -0.58(13) | 0.65(18) —
5.34 | 350 | 3.21(46) | -0.75(12) | -0.81(14) —
535 | 400 | 1.39(17) | -0.293(64) | -0.325(60) —
= T.=32 a4, =0.013350
524 | 350 | 9.3(1.3) | -0.53(18) | -0.40(20) | -1(2.2)
526 | 293 | 9.3(14) | -0.33(20) | -0.43(21) | -3(2.9)
507 | 1434 | 17(2.8) | 2.76(63) | -3.00(73) | 7(1.6)
52715 | 2323 | 50(10) | -6(2.3) 7(2.6) | -23(5.0)
5272 | 6300 | 42(5.6) | -7(L.0) 8(1.1) | -19(2.9)
5.2725 | 3790 | 44(7.0) | -7(L.3) 8(1.5) | -18(3.4)
5.2728 | 3175 | 27(3.6) | -4.45(67) | 4.92(71) | -9(L.8)
5.2731 | 2605 | 39(10) | -3.60(62) | -3.98(71) | -14(4.6)
5.27375] 1060 | 20(4.6) | -3.15(90) | -3(1.1) | -8(2.3)
5.275 | 494 | 15(4.0) | -2.10(31) | 2(1.0) | -6(1.9)
528 | 335 | 3.64(63) | 0.35(10) | 0.30(10) [=0.00(95)
5.285 | 277 | 5.65(93) | -0.77(21) | -1.02(28) | -2(1.4)
529 | 290 | 4.33(95) | -0.74(25) | -0.88(28) |-1.27(93)
532 | 380 | LI5(13) | -0.284(48) [ -0.332(52) | 0.21(38)
54 | 295 |0.083(14) | -0.046(14) | -0.042(15) | 0.00(10)
| T,=1 L.—12 ang=0.307036 |



TABLE VI: (continued)

disc

ﬁ # Traj. Xm Xt,o Xt, T Xt,f
5.3 850 0.367(17) -0.094(10) -0 0813(96)

5325 | 350 | 0.355(24) [-0.119(19) [-0.103(16) |
535 | 350 [0.373(28) [-0.002(17) [-0.007(18) |
5.375 350 0.359(25) —0.110(22) —0.132(22) —
53875 | 350 | 0.372(31) | -0.154(41) [-0.150(41) |
5.4 350 0.367(26) -0.115(25) —0.103(28) —
5.4125 350 0.320(21) -0.089(18) —0.090(18) —
5.425 850 0.366(18) -0.142(16) —0.150(19) —
5.4375 850 0.363(19) -0.147(22) —0.144(24) —
5.45 800 0.350(18) —0.094(12) —0.110(12) —
5.475 3540 0.591(21) —0.250(22) —0.270(25) -0 147(34)
5.475 750 0.387(24) —0.152(19) —0.154(22) — |
5.1875 | 3530 | 0.674(23) | -0.322(26) | -0.347(26) |-0.327(A1)]
5.4875 700 0.594(75) —0.305(51) —0.334(54) —
5.49375| 3390 0.654(24) -0.302(26) —0.328(25) -0.362(40)
5.5 2440 0.675(31) -0.333(28) —0.364(32) -0 377(48)
5.5 600 0.430(42) -0.176(27) —0.180(29) —
5.50625| 3370 0.682(30) -0.329(22) —0.354(26) -0.487(50)
5.5125 | 3460 0.727(42) —0.366(33) —0.409(37) —0.552(74)
5.5125 700 0.488(45) —0.254(35) —0.284(44) —
5.525 | 3550 | 0.513(17) | -0.234(19) | -0.246(21) |-0.185(29)]
5.525 700 0.352(25) —0.142(28) —0.169(29) — |
5.5375 | 3430 0.399(10) -0 1341(85) -0 1474(86) -0 001(17)|
5.5375 700 0.317(18) -0.108(12) —0.148(17) — |
5.55 1010 0.337(16) -0.126(12) —0.146(17) -0 094(31)
5.55 700 0.295(16) -0.128(14) —0.147(17) —
5.575 700 0.221(10) —0.0641(83) —0.0866(83) —

56 | 800 [0.2125(99)]-0.0642(72)|-0.0863(89)|

L;=4 L,=16 amq:0.150000
53 T 2050 [ 0.74(13) | -0.184(53) | -0.096(37) | 0.23(25)
5.36 16640 0.929(49) —0.224(18) —0.209(18) —0.014(79)
5.38 | 13550 | 1.062(69) [ -0.320(27) | -0.317(27) | -0.21(10)
5.39 9000 1.296(95) -0.412(40) —0.442(40) —0.25(15)
5.4 10000 1.295(80) -0.431(34) —0.497(38) —0.72(13)
5.405 8550 1.48(10) -0.523(43) —0.599(49) —1.09(17)
5.41 6200 1.94(23) -0.758(93) -0.80(10) —1.55(29)
5.415 8800 1.87(14) -0.675(59) —0.777(62) —1.25(19)
5.42 | 12300 | 1.88(11) [-0.672(50) | -0.793(53) | -L.13(14)
5.425 | 14300 | 1.520(34) | -0.537(38) | 0.620(42) [ -L.I3(11)
5.43 9000 |1 180(77) —0.417(36) —0.461(41) —0.72(11)
5.44 | 7300 | 1.05(10) [-0.328(42) [-0.396(44) | -0.43(13)
5.46 7350 0.657(52) -0.235(24) —0.231(23) —0.18(10)
5.47 1200 0.55(12) -0.211(60) —0.229(65) —0.15(19)
5.48 1250 0.526(99) -0.256(53) —0.207(46) 0.02(23)
5.49 1200 0.49(10) -0.194(59) —0.171(54) —0.18(21)
5.5 1300 0.54(10) -0.180(48) —0.195(48) 0.07(17)
5.52 900 0 283(70) —0.100(30) —0.106(44) —0.06(11)
T=1 T.=90 am,=0.086060

5.3 400 1.384(93) —0.145(28) —0.184(37) —
532 | 350 | 1.136(94) [-0.196(42) [-0.177(30) |
5.34 750 2.04(29) —0.56(11) —0.58(11) —
5.345 750 2.22(27) —0.58(11) -0.60(11) —
5.35 250 2.31(27) —0.49(11) —0.521(98) —
5.355 700 2.58(46) —0.63(15) -0.73(18) —




TABLE VI: (continued)

# Traj.| e Xt.o Xt,r Xt.f

8140 | 5.13(39) | -1.59(14) | -1.76(16) | -0.44

8565 | 4.16(31) | -1.24(10) | -1.38(11) |-0.59

5574 | 3.37(27) |-0.970(97) | -1.09(10) | 0.07(
800 | 2.00(40) | -0.52(14) | -0.58(14) —
350 | 1.77(32) | -0.46(13) | -0.58(14) —
300 | 1.86(38) | -0.42(12) | -0.57(15) —
400 | 0.810 0.243(39) [ 0.227(36) |

(98)
900 | 0.649(40) [ -0.164(18) [ -0.171(17) | —
L,=1 L,=32 amy=0.026700

149 [ 7.7(1.8) | -0.71(27) [ -1.10(30) | 0.6(2.
650 | 4.38(57) | -0.409(96) | -0.46(13) |-1.52(
378 | 5.9(1.0) | -0.76(33) | -0.80(32) | -1(L.
1200 | 6.98(34) | -1.21(24) | -1.44(27) |-3.71
3960 | 18(3.0) | -4.01(70) | -4.43(77) | -10(2.1)
3450 | 22(1.6) | -4.45(35) | -5.05(45) | -10(L.1)
3118 | 23(6.9) | -4(1.6) | -5(1.8) | -11(4.3)
950 | 13(2.7) | -2.54(58) | -2.99(65) | -6(2.
345 | 59(1.2) | -1.13(24) | -1.26(30) | -3(L.
165 | 3.91(55) | -0.72(13) | -0.56(11) |-0.34
235 | 2.28(42) | -0.46(11) | -0.42(11) [-0.80
300 | 3.13(70) | -0.60(18) | -0.57(18) | -0.49
265 | 1.55(25) | -0.236(85) | -0.304(30) | -0.64
285 | 1.23(18) | -0.282(55) | -0.259(65) | 0.16(36)
L,=1 L.=16 amg=0.013350

9600 | T4(1.1) | -2.08(29) | -2.30(36) | -4.85(
6350 | 23(4.0) | -3.96(39) | -4(1.0) | -8(2.
6500 | 30(4.1) | -5.35(30) | -5.96(90) | -13(2.2)
12400 | 48(5.1) | -8(L.0) | -9(L.1) | -20(2.5)
6800 | 42(5.0) | -7.19(98) | -8(1.0) | -17(2.6)
9350 | 38(6.2) | 1.25(63) | 1.44(72) | -16(3.3)
2700 | 23(48) | -3.84 .

84
1200 | 11.00(97) -1.64518; 4.90%20
1200 | 7.84(90) | -1.15(17) (

L,=1 L.=21 amg=0.044440
1310 | 4.70(48) | -1.02(16) | -1.10(19) [-2.03
2200 | 8.53(86) | -2.03(24) | -2.24(27) | -4.81
1000 | 8.5(1.1) | -2.05(31) | -2.32(36) |-4.65
2620 | 8.6(1.1) | -1.95(31) | -2.20(34) | -5.12
2520 | 10(2.8) | -2.53(70) | -2.80(83) | -6(2
2600 | 9.5(1.1) | -2.21(29) | -2.45(33) | -5.70
2260 | 9.8(1.4) | -2.36(37) | -2.63(42) | -5.48
1470 | 7.1(1.2) | -1.63(30) | -1.76(33) | -3.46
1420 | 3.37(37) | -0.74(10) | -0.82(11) |-1.09
1000 | 2.43(40) | -0.50(11) | -0.55(12) | -0.86
900 | 1.56(14) |-0.365(50) | -0.412(50) | -0.70
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TABLE VII: Values of x%°™" merasured at the § nearest to the pseudocritical coupling. This values

m

disc

was taken as a constant through the critical region and added to x&:

to obtain x,,.

Ls| amg 8 |# Traj.| x5em"

12|0.153518|5.4125| 5600 | 1.01(5)

16| 0.075 | 5.35 | 5000 [1.59(10)

20| 0.04303 | 5.315 | 2500 | 2.12(5)

32| 0.01335 |5.2725| 120* | 0.2(5)*

1210.307036| 5.5 6200 | 0.55(3)

16| 0.15 | 5.41 | 5000 | 1.00(5)

20| 0.08606 | 5.36 | 2550 | 1.3(1)

32| 0.0267 |5.2925| 80* | 0.4(2)*

24| 0.04444 | 5.316 | 3150 | 2.02(9)

“This quantity was measured only on a small fraction of configurations. Due to limited statistics the result-

ing value for x%"" is compatible with zero. However for these cases (Ls = 32 and am, = 0.01335,0.0267)

conn

X5 is only a small fraction of x,, and can be safely neglected within errors.

TABLE VIII: Pseudocritical couplings 3. extimated from the reweightes curves for xe ¢

Lg| am, Oe

12/0.153518| 5.4112(18)

16| 0.075 |5.35175(82)

20| 0.04303 | 5.3164(11)

32(0.01335 |5.27180(20)

12/0.307036| 5.502(10)

16| 0.15 |5.41153(61)

20| 0.08606 |5.36072(77)

32| 0.0267 |5.29250(15)

24| 0.04444 | 5.3164(18)

16| 0.01335 |5.27168(27)
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APPENDIX B: ESTIMATE OF THE BACKGROUND OF Cy

No significant dependence of the background Cj from the volume of the system is expected
since it is an ultraviolet quantity, while dependence on am, and (3 is expected. In order to
estimate Cy(3, am,) we performed a linear fit of the tails in the [ region far from the peak

for each different value of am,. The procedure used is the following:

e first estimate the width W of the peak. The width that we choose to use as a reference

is the width at 75% of the total height of the peak;

e then for each peak eliminate those points which lie in the 3 region around the maximum

of the curve at distances smaller than n - W, where n is a constant;

e fit the remaining points with a linear function and study the dependence of this fitted

background on the parameter n.

For the whole procedure to make sense, we require that the background should fit better
as n is increased. We require the value to be stable at sufficiently large n. This proves
qualitatively to be the case. Since the number of points at large n is not large, we choose
the best value of n by minimizing the reduced x? of the fit of the background.

No dependence of the background on the bare quark mass am, was found so we can take
Co(B,amy,) = Co(3). We choose then to do a global fit constraining all Cy peaks at different
masses to share the same background. The result of this fit is shown in Fig[T8 The best fit
is obtained excluding a region of width 12W. Table [X] shows the stability of the fit as the
parameter n is in the range 6-15.

It should be noticed that even the § dependence is very weak and that Cy(/3) is consistent
with a constant in the [ range examined within the statistical errors so that the whole

procedure described here is in practice equivalent to taking Cy(3) a constant.
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TABLE IX: Cy(3) fit parameters for different values of n. The fit function is Co(8) = q1 + ¢28

n q q2 x%/d.o.f.|d.o.f.
310.608(60)| -0.103(11) | 8.70 84
40.535(44)[-0.0908(84)| 517 | 77
510.529(48)|-0.0887(88)| 5.19 66
6 |0.452(44)|-0.0751(80)| 3.56 | 58
710.444(44)|-0.0740(80)| 3.62 | 53
810.436(44)|-0.0728(80)| 3.61 | 47
9(0.416(44)[-0.0693(77)| 3.19 | 42
10]0.420(44)|-0.0695(75)| 3.11 | 37
11]0.401(41)|-0.0661(77)| 2.89 | 34
12|0.400(43)|-0.0663(83)| 2.81 29
13(0.405(53)|-0.0668(97)| 2.99 | 26
14[0.411(56)| -0.068(10) | 2.95 | 24
15(0.404(56)| -0.067(10) | 3.15 | 21
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