66 research outputs found
Continuous transition between decagonal quasicrystal and approximant by formation and ordering of out-of-phase domains
The transformation between a quasicrystal and an orthorhombic approximant is studied at the nominal composition Al72.7Ni8.3Co19 by electron diffraction and high-resolution transmission electron microscopy. A series of transition states indicating a continuous transformation is monitored. First, the material transforms to a single-oriented one-dimensional quasicrystal. In the course of this process out-of-phase domains are formed. The approximant results from ordering of these domains to a periodic structure
Metamorphosis of Heterostructured Surface-Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities
Materials derived from surface-mounted metal–organic frameworks (SURMOFs) are promising electrocatalysts for the oxygen evolution reaction (OER). A series of mixed-metal, heterostructured SURMOFs is fabricated by the facile layer-by-layer deposition method. The obtained materials reveal record-high electrocatalyst mass activities of ≈2.90 kA g at an overpotential of 300 mV in 0.1 m KOH, superior to the benchmarking precious and nonprecious metal electrocatalysts. This property is assigned to the particular in situ self-reconstruction and self-activation of the SURMOFs during the immersion and the electrochemical treatment in alkaline aqueous electrolytes, which allows for the generation of NiFe (oxy)hydroxide electrocatalyst materials of specific morphology and microstructure
Building blocks and COFs formed in concert —Three‐component synthesis of pyrene‐fused Azaacene covalent organic framework in the bulk and as films
A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamines o‐phenylenediamine (Ph), 2,3‐diaminonaphthalene (Naph), or (1R,2R)‐(+)‐1,2‐diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11‐hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene‐fused azaacene, i.e., Aza‐COF series with full conversion of the dione moiety, long‐range order, and high surface area. In addition, the novel three‐component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza‐COFs with nanostructured surfaces on various substrates. The Aza‐COFs exhibit light absorption maxima in the blue spectral region, and each Aza‐COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza‐Ph‐ and Aza‐Naph‐COFs suggest ultrafast relaxation dynamics of excited‐states within these COFs.Deutsche Forschungsgemeinschaft | Ref. ME 4515/1-2Fundação para a Ciência e a Tecnologia | Ref. SFRH/BD/141865/2018Fundação para a Ciência e a Tecnologia | Ref. PTDC/QUI-OUT/2095/2021Fundação para a Ciência e a Tecnologia | Ref. UIDB/50011/2020Fundação para a Ciência e a Tecnologia | Ref. UIDP/50011/2020Fundação para a Ciência e a Tecnologia | Ref. LA/P/0006/2020National Science Foundation (EE.UU.) | Ref. DMR-1848067Engineering and Physical Sciences Research Council (Reino Unido) | Ref. EP/V055127/1Agencia Estatal de Investigación | Ref. RYC2020-030414-IUniversidade de Vigo/CISU
A Carbon Nanofilament-Bead Necklace
Carbon nanofilaments with carbon beads grown on their surfaces were successfully synthesized reproducibly by a floating catalyst CVD method. The nanofilaments hosting the pearl-like structures typically show an average diameter of about 60 nm, which mostly consists of low-ordered graphite layers. The beads with diameter range 150−450 nm are composed of hundreds of crumpled and random graphite layers. The mechanism for the formation of these beaded nanofilaments is ascribed to two nucleation processes of the pyrolytic carbon deposition, arising from a temperature gradient between different parts of the reaction chamber. Furthermore, the Raman scattering properties of the beaded nanofilaments have been measured, as well as their confocal Raman G-line images. The Raman spectra reveal that that the trunks of the nanofilaments have better graphitic properties than the beads, which is consistent with the HRTEM analysis. The beaded nanofilaments are expected to have high potential applications in composites, which should exhibit both particle- and fiber-reinforcing functions for the host matrixes
Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility
Iron(III) fumarate materials are well suited for biomedical applications as they feature biocompatible building blocks, porosity, chemical functionalizability, and magnetic resonance imaging (MRI) activity. The synthesis of these materials however is difficult to control, and it has been challenging to produce monodisperse particle sizes and morphologies that are required in medical use. Here, we report the optimization of iron(III) fumarate nano- and microparticle synthesis by surfactant-free methods, including room temperature, solvothermal, microwave, and microfluidic conditions. Four variants of iron(III) fumarate with distinct morphologies were isolated and are characterized in detail. Structural characterization shows that all iron(III) fumarate variants exhibit the metal–organic framework (MOF) structure of MIL-88A. Nanoparticles with a diameter of 50 nm were produced, which contain crystalline areas not exceeding 5 nm. Solvent-dependent swelling of the crystalline particles was monitored using in situ X-ray diffraction. Cytotoxicity experiments showed that all iron(III) fumarate variants feature adequate biotolerability and no distinct interference with cellular metabolism at low concentrations. Magnetic resonance relaxivity studies using clinical MRI equipment, on the other hand, proved that the MRI contrast characteristics depend on particle size and morphology. All in all, this study demonstrates the possibility of tuning the morphological appearance of iron(III) fumarate particles and illustrates the importance of optimizing synthesis conditions for the development of new biomedical materials
Dynamic Acoustic Control of Individual Optically Active Quantum Dot-like Emission Centers in Heterostructure Nanowires
We probe and control the optical properties of emission centers forming in
radial het- erostructure GaAs-Al0.3Ga0.7As nanowires and show that these
emitters, located in Al0.3Ga0.7As layers, can exhibit quantum-dot like
characteristics. We employ a radio frequency surface acoustic wave to
dynamically control their emission energy and occupancy state on a nanosec- ond
timescale. In the spectral oscillations we identify unambiguous signatures
arising from both the mechanical and electrical component of the surface
acoustic wave. In addition, differ- ent emission lines of a single quantum dot
exhibit pronounced anti-correlated intensity oscilla- tions during the acoustic
cycle. These arise from a dynamically triggered carrier extraction out of the
quantum dot to a continuum in the radial heterostructure. Using finite element
modeling and Wentzel-Kramers-Brillouin theory we identify quantum tunneling as
the underlying mech- anism. These simulation results quantitatively reproduce
the observed switching and show that in our systems these quantum dots are
spatially separated from the continuum by > 10.5 nm.Comment: This document is the unedited Author's version of a Submitted Work
that was subsequently accepted for publication in Nano Letters, copyright
\c{copyright} American Chemical Society after peer review. To access the
final edited and published work see
http://pubs.acs.org/doi/abs/10.1021/nl404043
- …