2,624 research outputs found

    D=6, N=2, F(4)-Supergravity with supersymmetric de Sitter Background

    Full text link
    We show that there exists a supersymmetric de Sitter background for the D=6, N=2, F(4) supergravity preserving the compact R-symmetry and gauging with respect to the conventional Anti de Sitter version of the theory. We construct the gauged matter coupled F(4) de Sitter supergravity explicitly and show that it contains ghosts in the vector sector.Comment: 19 pages, Late

    Relating Superembeddings and Non-linear Realisations

    Get PDF
    We discuss the relation between the superembedding method for deriving worldvolume actions for D-branes and the method of Partially Broken Global Supersymmetry based upon linear and non-linear realisations of SUSY. We give the explicit relation for the cases of space filling branes in 3 and 4 dimensions and show that the standard F-constraint of the superembedding method is the source of the required covariant non-linear constraints for the PBGS method.Comment: 19 pages. Improved spelling, references adde

    On the construction of variant supergravities in D=11, D=10

    Get PDF
    We construct with a geometric procedure the supersymmetry transformation laws and Lagrangian for all the ``variant'' D=11 and D=10 Type IIA supergravities. We identify into our classification the D=11 and D=10 Type IIA ``variant'' theories first introduced by Hull performing T-duality transformation on both spacelike and timelike circles. We find in addition a set of D=10 Type IIA ``variant'' supergravities that can not be obtained trivially from eleven dimensions compactifying on a circle.Comment: 21 pages, Late

    The Scherk-Schwarz mechanism as a flux compactification with internal torsion

    Get PDF
    The aim of this paper is to make progress in the understanding of the Scherk-Schwarz dimensional reduction in terms of a compactification in the presence of background fluxes and torsion. From the eleven dimensional supergravity point of view, we find that a general E6(6) S-S phase may be obtained by turning on an appropriate background torsion, together with suitable fluxes, some of which can be directly identified with certain components of the four-form field-strength. Furthermore, we introduce a novel (four dimensional) approach to the study of dualities between flux/torsion compactifications of Type II/M-theory. This approach defines the action that duality should have on the background quantities, in order for the E7(7) invariance of the field equations and Bianchi identities to be restored also in the presence of fluxes/torsion. This analysis further implies the interpretation of the torsion flux as the T-dual of the NS three-form flux.Comment: Version published on J. High Energy Phy

    Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

    Get PDF
    We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure

    Scherk-Schwarz reduction of M-theory on G2-manifolds with fluxes

    Full text link
    We analyse the 4-dimensional effective supergravity theories obtained from the Scherk--Schwarz reduction of M-theory on twisted 7-tori in the presence of 4-form fluxes. We implement the appropriate orbifold projection that preserves a G2-structure on the internal 7-manifold and truncates the effective field theory to an N=1, D=4 supergravity. We provide a detailed account of the effective supergravity with explicit expressions for the Kaehler potential and the superpotential in terms of the fluxes and of the geometrical data of the internal manifold. Subsequently, we explore the landscape of vacua of M-theory compactifications on twisted tori, where we emphasize the role of geometric fluxes and discuss the validity of the bottom-up approach. Finally, by reducing along isometries of the internal 7-manifold, we obtain superpotentials for the corresponding type IIA backgrounds.Comment: 43 pages, Latex; v3 typos corrected, one reference added, JHEP versio

    Some Aspects of Spherical Symmetric Extremal Dyonic Black Holes in 4d N=1 Supergravity

    Full text link
    In this paper we study several aspects of extremal spherical symmetric black hole solutions of four dimensional N=1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and non-zero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincides. In addition, we prove the local existence of non-trivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple {\lC}^{n}-models with both linear superpotential and gauge couplings.Comment: 17 pages, no figure. Added an author. Major revision: typos and grammar corrected, some statements modified, added a section about local existence of scalar fields. Accepted for publication in Int J Mod Phys

    Tits-Satake projections of homogeneous special geometries

    Full text link
    We organize the homogeneous special geometries, describing as well the couplings of D=6, 5, 4 and 3 supergravities with 8 supercharges, in a small number of universality classes. This relates manifolds on which similar types of dynamical solutions can exist. The mathematical ingredient is the Tits-Satake projection of real simple Lie algebras, which we extend to all solvable Lie algebras occurring in these homogeneous special geometries. Apart from some exotic cases all the other, 'very special', homogeneous manifolds can be grouped in seven universality classes. The organization of these classes, which capture the essential features of their basic dynamics, commutes with the r- and c-map. Different members are distinguished by different choices of the paint group, a notion discovered in the context of cosmic billiard dynamics of non maximally supersymmetric supergravities. We comment on the usefulness of this organization in universality classes both in relation with cosmic billiard dynamics and with configurations of branes and orbifolds defining special geometry backgrounds.Comment: 65 pages, LaTeX; v2: added reference; v3: small corrections, section 3.3 modifie

    On the Taxonomy of Flux Vacua

    Full text link
    We investigate several predictions about the properties of IIB flux vacua on Calabi-Yau orientifolds, by constructing and characterizing a very large set of vacua in a specific example, an orientifold of the Calabi-Yau hypersurface in WP1,1,1,1,44WP^{4}_{1,1,1,1,4}. We find support for the prediction of Ashok and Douglas that the density of vacua on moduli space is governed by det(Rω){\rm det}(-R - \omega) where RR and ω\omega are curvature and K\"ahler forms on the moduli space. The conifold point ψ=1\psi=1 on moduli space therefore serves as an attractor, with a significant fraction of the flux vacua contained in a small neighborhood surrounding ψ=1\psi=1. We also study the functional dependence of the number of flux vacua on the D3 charge in the fluxes, finding simple power law growth.Comment: 22 pages, harvmac; v2 typos corrected, refs added; v3 minor error correcte

    O3/O7 Orientifold Truncations and Very Special Quaternionic-Kaehler Geometry

    Full text link
    We study the orientifold truncation that arises when compactifying type II string theory on Calabi-Yau orientifolds with O3/O7-planes, in the context of supergravity. We look at the N=2 to N=1 reduction of the hypermultiplet sector of N=2 supergravity under the truncation, for the case of very special quaternionic-Kaehler target space geometry. We explicitly verify the Kaehler structure of the truncated spaces, and we study the truncated isometry algebra. For symmetric special quaternionic spaces, we give a complete overview of the spaces one finds after truncation. We also find new examples of dual Kaehler spaces, that give rise to flat potentials in N=1 supergravity.Comment: 25 pages, LaTeX, v2:curvature tensor of the dual symmetric spaces calculated, section 7 expanded, references added, v3:few typos fixed, version to appear in Class.Quantum Gravit
    corecore