112 research outputs found
The Siblings With Ischemic Stroke Study (SWISS) Protocol
BACKGROUND: Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. METHODS: Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. DISCUSSION: Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members
Influence of Maternal Dysmetabolic Conditions During Pregnancy on Cardiovascular Disease
Pathogenic factors associated with maternal hypercholesterolemia, obesity, and diabetic conditions during pregnancy influence fetal development and predispose offspring to cardiovascular disease. Animal models have established cause–effect relationships consistent with epidemiological findings in humans and have demonstrated, in principle, that interventions before or during pregnancy can reduce or prevent pathogenic in utero programming. However, little is known about the mechanisms by which maternal dysmetabolic conditions enhance disease susceptibility in offspring. Identification of these mechanisms is rendered more difficult by the fact that programming effects in offspring may be latent and may require conventional risk factors and inherited genetic co-factors to become clinically manifest. Given the increasing prevalence of maternal risk factors, which is expected to lead to a wave of cardiovascular disease in the coming decades, and the length of prospective studies on developmental programming in humans, greater-than-usual emphasis on experimental models and translational studies is necessary
Recommended from our members
Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions.
To determine whether oxidized LDL enhances atherogenesis by promoting monocyte recruitment into the vascular intima, we investigated whether LDL accumulation and oxidation precede intimal accumulation of monocytes in human fetal aortas (from spontaneous abortions and premature newborns who died within 12 h; fetal age 6.2+/-1.3 mo). For this purpose, a systematic assessment of fatty streak formation was carried out in fetal aortas from normocholesterolemic mothers (n = 22), hypercholesterolemic mothers (n = 33), and mothers who were hypercholesterolemic only during pregnancy (n = 27). Fetal plasma cholesterol levels showed a strong inverse correlation with fetal age (R = -0.88, P < 0.0001). In fetuses younger than 6 mo, fetal plasma cholesterol levels correlated with maternal ones (R = 0.86, P = 0.001), whereas in older fetuses no such correlation existed. Fetal aortas from hypercholesterolemic mothers and mothers with temporary hypercholesterolemia contained significantly more and larger lesions (758,651+/-87,449 and 451,255+/-37,448 micron2 per section, respectively; mean+/-SD) than aortas from normocholesterolemic mothers (61,862+/-9,555 micron2; P < 0.00005). Serial sections of the arch, thoracic, and abdominal aortas were immunostained for recognized markers of atherosclerosis: macrophages, apo B, and two different oxidation-specific epitopes (malondialdehyde- and 4-hydroxynonenal-lysine). Of the atherogenic sites that showed positive immunostaining for at least one of these markers, 58.6% were established lesions containing both macrophage/foam cells and oxidized LDL (OxLDL). 17.3% of all sites contained only native LDL, and 13.3% contained only OxLDL without monocyte/ macrophages. In contrast, only 4.3% of sites contained isolated monocytes in the absence of native or oxidized LDL. In addition, 6.3% of sites contained LDL and macrophages but few oxidation-specific epitopes. These results demonstrate that LDL oxidation and formation of fatty streaks occurs already during fetal development, and that both phenomena are greatly enhanced by maternal hypercholesterolemia. The fact that in very early lesions LDL and OxLDL are frequently found in the absence of monocyte/macrophages, whereas the opposite is rare, suggests that intimal LDL accumulation and oxidation contributes to monocyte recruitment in vivo
Recommended from our members
Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study.
BackgroundChildren generally have low cholesterol and no clinical manifestations of atherosclerosis, but fatty-streak formation begins in fetuses and is greatly increased by maternal hypercholesterolaemia during pregnancy. In the FELIC study we assessed the evolution of such lesions during childhood.MethodsComputer-assisted imaging was used to measure the area of the largest individual lesion and the cumulative lesion area per section in serial cross-sections through the entire aortic arch and abdominal aorta of 156 normocholesterolaemic children aged 1-13 years, who died of trauma and other causes. Children were classified by whether their mother had been normocholesterolaemic (n=97) or hypercholesterolaemic (n=59) during pregnancy. Atherosclerosis was correlated with 13 established or potential risk factors. Findings The largest fatty streaks in the aortic arch of children younger than 3 years of hypercholesterolaemic mothers were 64% smaller than those previously found in corresponding fetuses (p<0.0001), which suggests that fetal fatty streaks may regress after birth. In the two groups, lesion size in the aortic arch and abdominal aorta increased linearly with age (r=0.87-0.98). However, lesions progressed strikingly faster in children of hypercholesterolaemic mothers than in those of normocholesterolaemic mothers (p<0.0001). Conventional risk factors for atherosclerosis in children or mothers correlated with lesion size, but did not account for the faster progression of atherogenesis in normocholesterolaemic children of hypercholesterolaemic mothers.InterpretationOur results suggest that maternal hypercholesterolaemia during pregnancy induces changes in the fetal aorta that determine the long-term susceptibility of children to fatty-streak formation and subsequent atherosclerosis. If so, cholesterol-lowering interventions in hypercholesterolaemic mothers during pregnancy may decrease atherogenesis in children
Expression of HECA-452 in parapsoriasis and mycosis fungoides
We have investigated the HECA-452 expression in large plaque parapsoriasis (PP) and mycosis fungoides (MF) patients, evaluating the potential role of this biomarker in both cutaneous disorders. Skin specimens from 72 PP and 61 MF patients were selected in this study. We compared their actual histological diagnosis with their previous diagnosis and we found that all 72 PP patients had the same diagnosis as before (stable PP), while 26 out of 61 MF had a previous PP histological diagnosis (evolving PP). Our results show an increased expression of HECA-452 in MF compared to PP (p<0.01). Furthermore, evolving PP showed a significantly higher level of HECA-452 than stable PP (p<0.05). We conclude that HECA-452 expression increases during the natural history of Mycosis Fungoides. HECA-452 could be used as a biomarker for MF and predict which PP evolves to MF
- …