7 research outputs found

    Isolation and Characterization of a Novel Rebaudioside M Isomer from a Bioconversion Reaction of Rebaudioside A and NMR Comparison Studies of Rebaudioside M Isolated from Stevia rebaudiana Bertoni and Stevia rebaudiana Morita

    No full text
    A minor product, rebaudioside M2 (2), from the bioconversion reaction of rebaudioside A (4) to rebaudioside D (3), was isolated and the complete structure of the novel steviol glycoside was determined. Rebaudioside M2 (2) is considered an isomer of rebaudioside M (1) and contains a relatively rare 1→6 sugar linkage. It was isolated and characterized with NMR (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D-TOCSY, and NOESY) and mass spectral data. Additionally, we emphasize the importance of 1D and 2D NMR techniques when identifying complex steviol glycosides. Numerous NMR spectroscopy studies of rebaudioside M (1), rebaudioside D (3), and mixture of 1 and 3 led to the discovery that SG17 which was previously reported in literature, is a mixture of rebaudioside D (3), rebaudioside M (1), and possibly other related steviol glycosides

    Small Molecule Suppression of Carbapenem Resistance in NDM-1 Producing <i>Klebsiella pneumoniae</i>

    No full text
    The already considerable global public health threat of multidrug-resistant Gram-negative bacteria has become even more of a concern following the emergence of New Delhi metallo-β-lactamase (NDM-1) producing strains of <i>Klebsiella pneumoniae</i> and other Gram-negative bacteria. As an alternative approach to the traditional development of new bactericidal entities, we have identified a 2-aminoimidazole-derived small molecule that acts as an antibiotic adjuvant and is able to suppress resistance of a NDM-1 producing strain of <i>K. pneumoniae</i> to imipenem and meropenem, in addition to suppressing resistance of other β-lactam nonsusceptible <i>K. pneumoniae</i> strains. The small molecule is able to lower carbapenem minimum inhibitory concentrations by up to 16-fold, while exhibiting little bactericidal activity itself

    A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni

    No full text
    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX—a novel steviol glycoside—from a commercially‐supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C‐13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation—based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence‐Distortionless Enhancement Polarization Transfer (HSQC‐DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data—of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α‐linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog

    Bioconversion of Rebaudioside I from Rebaudioside A

    No full text
    To supply the increasing demand of natural high potency sweeteners to reduce the calories in food and beverages, we have looked to steviol glycosides. In this work we report the bioconversion of rebaudioside A to rebaudioside I using a glucosyltransferase enzyme. This bioconversion reaction adds one sugar unit with a 1→3 linkage. We utilized 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC-DEPT, HMBC, 1D TOCSY and NOESY) and mass spectral data to fully characterize rebaudioside I
    corecore