120 research outputs found

    Free Field Realisations in Logarithmic Conformal Field Theory

    Get PDF
    Invariances of conformal field theories (CFTs) would seem to suggest that correlation functions behave as power laws. However, logarithms also exhibit conformal invariance. When logarithms are permitted in two-dimensional CFTs, the corresponding state spaces characteristically involve reducible but indecomposable Virasoro modules with non-diagonalisable algebra action. Notably, such state spaces no longer naturally admit a grading into energy eigenspaces. Despite this non-diagonalisable energy operator, one finds significant physical motivation for the study of such representations, with many interesting statistical mechanical models exhibiting this behaviour: percolation, dilute polymers, self-avoiding walks, and more. A vast amount of effort has been made in the study of these two-dimensional logarithmic CFTs, both their internal structure and their fusion rules. However, it would be fair to say that logarithmic CFTs are still less well understood than their non-logarithmic counterparts. In recent years, the relevance of free-field oscillator algebras to the study of such representations has become more and more apparent. Many of the module structures in question might more appropriately be considered as Fock-type spaces. In this thesis we develop free field realisations of logarithmic CFTs. We analyse some general features, examining staggered modules of the Virasoro algebra in particular, before providing a construction for staggered modules consisting of Fock spaces considered as Virasoro modules. We derive an explicit formula for a module invariant of staggered Fock modules, verifying that the given construction agrees with those seen to date in the literature. We then turn to more conjectural areas, examining how the non-diagonalisaiblity of the Virasoro representation can be reproduced by the inclusion of additional modes into the underlying oscillator algebras, and how the states created by these modes correspond to the vacuum evaluations of logarithmic fields. We take these as our motivating examples for a subsequent working definition of logarithmic vertex operator algebras, in the hope that not only do their state spaces correspond to the staggered structures developed to this point, but that they provide an additional avenue of approach in the construction and study of logarithmic conformal field theories

    The Zwicky Transient Facility Observing System

    Get PDF
    The Zwicky Transient Facility (ZTF) is a synoptic optical survey for high-cadence time-domain astronomy. Building upon the experience and infrastructure of the highly successful Palomar Transient Factory (PTF) team, ZTF will survey more than an order of magnitude faster than PTF in sky area and volume in order to identify rare, rapidly varying optical sources. These sources will include a trove of supernovae, exotic explosive transients, unusual stellar variables, compact binaries, active galactic nuclei, and asteroids. The single-visit depth of 20.4 mag is well matched to spectroscopic follow-up observations, while the co-added images will provide wide sky coverage 1.5 – 2 mag deeper than SDSS. The ZTF survey will cover the entire Northern Sky and revisit fields on timescales of a few hours, providing hundreds of visits per field each year, an unprecedented cadence, as required to detect fast transients and variability. This high-cadence survey is enabled by an observing system based on a new camera having 47 deg^2 field of view – a factor of 6.5 greater than the existing PTF camera - equipped with fast readout electronics, a large, fast exposure shutter, faster telescope and dome drives, and various measures to optimize delivered image quality. Our project has already received an initial procurement of e2v wafer-scale CCDs and we are currently fabricating the camera cryostat. International partners and the NSF committed funds in June 2014 so construction can proceed as planned to commence engineering commissioning in 2016 and begin operations in 2017. Public release will allow broad utilization of these data by the US astronomical community. ZTF will also promote the development of transient and variable science methods in preparation for the seminal first light of LSST

    A Close Companion Search Around L Dwarfs Using Aperture Masking Interferometry and Palomar Laser Guide Star Adaptive Optics

    Get PDF
    We present a close companion search around 16 known early L dwarfs using aperture masking interferometry with Palomar laser guide star adaptive optics (LGS AO). The use of aperture masking allows the detection of close binaries, corresponding to projected physical separations of 0.6-10.0 AU for the targets of our survey. This survey achieved median contrast limits of ΔK ~ 2.3 for separations between 1.2λ/D-4λ/D and ΔK ~ 1.4 at 2/3λ/D. We present four candidate binaries detected with moderate-to-high confidence (90%-98%). Two have projected physical separations less than 1.5 AU. This may indicate that tight-separation binaries contribute more significantly to the binary fraction than currently assumed, consistent with spectroscopic and photometric overluminosity studies. Ten targets of this survey have previously been observed with the Hubble Space Telescope as part of companion searches. We use the increased resolution of aperture masking to search for close or dim companions that would be obscured by full aperture imaging, finding two candidate binaries. This survey is the first application of aperture masking with LGS AO at Palomar. Several new techniques for the analysis of aperture masking data in the low signal-to-noise regime are explored

    The blue channel of the Keck low-resolution imaging spectrometer

    Get PDF
    This paper summarizes the optical, mechanical, electrical, and software design of LRIS-B, the blue channel of the Keck Low Resolution and Imaging Spectrograph. The LRIS-B project will shortly be completing the existing LRIS instrument through the addition of dichroic beamsplitters, grisms to disperse light on the blue channel, broad-band u, B, and V photometric filters, a blue and near-UV transmitting camera lens, and a large format blue-sensitive CCD detector. LRIS-B will also introduce piezoelectric xy-actuation of the CCD detector inside its Dewar, in order to compensate for flexure in the existing instrument; ultimately the red-side CCD detector will be similarly equipped, its PZT xy-stage being independently programmed. The optical design of the LRIS-B camera uses only fused silica and calcium fluoride elements, and includes a decentered meniscus element to compensate for coma introduced by the LRIS off-axis paraboloid collimator. The design of the blue channel grisms have been optimized for maximum blaze efficiency, the highest dispersion grism having a groove density of 1200 gr/mm. Optical elements not in use at any given time will be stowed in carousels externally mounted to the instrument sidewalls. The entire instrument is designed to permit remote operation

    The Zwicky Transient Facility: Observing System

    Get PDF
    The Zwicky Transient Facility (ZTF) Observing System (OS) is the data collector for the ZTF project to study astrophysical phenomena in the time domain. ZTF OS is based upon the 48 inch aperture Schmidt-type design Samuel Oschin Telescope at the Palomar Observatory in Southern California. It incorporates new telescope aspheric corrector optics, dome and telescope drives, a large-format exposure shutter, a flat-field illumination system, a robotic bandpass filter exchanger, and the key element: a new 47-square-degree, 600 megapixel cryogenic CCD mosaic science camera, along with supporting equipment. The OS collects and delivers digitized survey data to the ZTF Data System (DS). Here, we describe the ZTF OS design, optical implementation, delivered image quality, detector performance, and robotic survey efficiency

    A near-infrared tip-tilt sensor for the Keck I laser guide star adaptive optics system

    Get PDF
    The sky coverage and performance of laser guide star (LGS) adaptive optics (AO) systems is limited by the natural guide star (NGS) used for low order correction. This limitation can be dramatically reduced by measuring the tip and tilt of the NGS in the near-infrared where the NGS is partially corrected by the LGS AO system and where stars are generally several magnitudes brighter than at visible wavelengths. We present the design of a near-infrared tip-tilt sensor that has recently been integrated with the Keck I telescope’s LGS AO system along with some initial on-sky results. The implementation involved modifications to the AO bench, real-time control system, and higher level controls and operations software that will also be discussed. The tip-tilt sensor is a H2RG-based near-infrared camera with 0.05 arc second pixels. Low noise at high sample rates is achieved by only reading a small region of interest, from 2×2 to 16×16 pixels, centered on an NGS anywhere in the 100 arc second diameter field. The sensor operates at either Ks or H-band using light reflected by a choice of dichroic beamsplitters located in front of the OSIRIS integral field spectrograph

    Identification of preexisting adaptive immunity to Cas9 proteins in humans

    Get PDF
    The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials
    corecore