311 research outputs found

    Transverse dynamics of charmed hadrons in ultra-relativistic nuclear collisions

    Full text link
    Transverse momentum pTp_{\rm T} spectra and anisotropic flow distributions are studied for charmonia and charmed hadrons produced in Pb-Pb collisions and measured with the ALICE detector at the CERN Large Hadron Collider (LHC). The investigations are performed within the framework of the Statistical Hadronization Model with the transverse dynamics evaluated using predictions from relativistic viscous hydrodynamics as implemented in the computer codes MUSIC and FluiduM. With this essentially parameter-free approach good agreement is obtained for pTp_{\rm T} spectra in the range pT<10p_{\rm T} < 10 GeV/c. The observed wide distribution in pTp_{\rm T} of anisotropic flow coefficients v2v_2 and v3v_3 for charmonia is also well reproduced, while their magnitude is generally somewhat over predicted. This finding may be connected to a difference in spatial distribution between light and charmed hadrons due to a different diffusion of light and heavy quarks in the hot fireball

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    J/ψ\rm{J}/\psi production as a function of multiplicity in pp and p-Pb collisions with ALICE

    No full text
    International audienceThe multiplicity dependence of charmed-particle production can unveil new information on processes taking part at the parton level and on the interplay of soft and hard production mechanisms in collisions of relativistic hadrons. In this contribution, we report on multiplicity-differential measurements of J/ψ\rm{J}/\psi in pp and p-Pb collisions studied by the ALICE Collaboration. Comparisons between measurements at different energies are drawn as well as comparisons with D\rm{D} mesons.We also discuss the comparison with different theoretical predictions

    Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at √sNN = 8.16 TeV

    No full text
    The study of the azimuthal anisotropy of inclusive muons produced in p-Pb collisions at sNN−−−√=8.16 TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, v2, is performed as a function of transverse momentum pT in the 0-20% high-multiplicity interval at both forward (2.032 GeV/c. The v2 coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward-central two-particle correlations. Both techniques give compatible results. A positive v2 is measured at both forward and backward rapidities with a significance larger than 4.7σ and 7.6σ, respectively, in the interval 2<pT<6 GeV/c. Comparisons with previous measurements in p-Pb collisions at sNN−−−√=5.02 TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems

    Measurement of ψ(2S) production as a function of charged-particle pseudorapidity density in pp collisions at √s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV with ALICE at the LHC

    No full text
    Production of inclusive charmonia in pp collisions at center-of-mass energy of s√ = 13 TeV and p-Pb collisions at center-of-mass energy per nucleon pair of sNN−−−√ = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/ψ, ψ(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame 2.5<ycms<4.0 for pp collisions, and 2.03<ycms<3.53 and −4.46<ycms<−2.96 for p-Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity (|η|<1.0). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The ψ(2S) yield increases with the charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations

    Measurement of the angle between jet axes in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    This letter presents the first measurement of the angle between different jet axes (denoted as ΔR) in Pb−Pb collisions. The measurement is carried out in the 0−10% most-central events at sNN−−−√=5.02 TeV. Jets are assembled by clustering charged particles at midrapidity using the anti-kT algorithm with resolution parameters R=0.2 and 0.4 and transverse momenta in the intervals 40<pchjetT<140 GeV/c and 80<pchjetT<140 GeV/c, respectively. Measurements at these low transverse momenta enhance the sensitivity to quark−gluon plasma (QGP) effects. A comparison to models implementing various mechanisms of jet energy loss in the QGP shows that the observed narrowing of the Pb−Pb distribution relative to pp can be explained if quark-initiated jets are more likely to emerge from the medium than gluon-initiated jets. These new measurements discard intra-jet pT broadening as described in a model calculation with the BDMPS formalism as the main mechanism of energy loss in the QGP. The data are sensitive to the angular scale at which the QGP can resolve two independent splittings, favoring mechanisms that incorporate incoherent energy loss

    Suppression of Λ(1520) resonance production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production yield of the Λ(1520) baryon resonance is measured at mid-rapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The pT-integrated production rate of Λ(1520) relative to Λ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at the LHC and the first 3σ evidence of Λ(1520) suppression within a single collision system. The measured Λ(1520)/Λ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s = 13 TeV and in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s√=13 TeV and p−Pb collisions at sNN−−−√=5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle Δφ and pseudorapidity separation Δη for pairs of primary charged particles within the pseudorapidity interval |η|<0.9 and the transverse-momentum interval 1<pT<4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6<|Δη|<1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events

    Suppression of Λ(1520) resonance production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production yield of the Λ(1520) baryon resonance is measured at mid-rapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The pT-integrated production rate of Λ(1520) relative to Λ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at LHC and the first evidence of Λ(1520) suppression in heavy-ion collisions. The measured Λ(1520)/Λ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances

    Linear and non-linear flow modes in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n>3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n=4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |η|<0.8 and the transverse momentum range 0.2<pT<5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system
    corecore