15 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Hormones and growth factors in ovarian cancer cells

    Get PDF

    Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily, in a human myxoid chondrosarcoma

    No full text
    The specific chromosomal translocation t(9;22)(q22-31;q11-12) has been observed in the myxoid variant of human chondrosarcoma, In agreement with this observation we report that the EWS gene located at chromosome band 22q12 becomes fused to CHN, a member of the steroid/thyroid receptor gene superfamily located at 9q22-31, in a skeletal myxoid chondrosarcoma. CHN appears to be the human homologue of the rat gene NOR1, which was recently identified as a sequence overexpressed in rat brain cells undergoing apoptosis, Our results also indicate that the chimaeric EWS-CHN gene encodes a EWS-CHN fusion protein in which the C-terminal RNA-binding domain of EWS is replaced by the entire CHN protein, comprising a long N-terminal domain, a central DNA binding domain and a C-terminal ligand-binding/dimerisation domain

    Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

    No full text
    Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have indentified a hybrid transcript that contains 5′ sequences (designated SYT) mapping to chromosome 18 and 3′ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT–SSX fusion protein. Both SYT and SSX failed to exhibit significant homology to known gene sequences

    Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma

    No full text
    Identification of the t(X;18)(p11.2;q11.2) that is associated with a high proportion of synovial sarcoma can be a useful diagnostic aid. The translocation results infusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene, two homologous genes within Xp11.2. Two-color interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction were assessed as approaches to identify the rearrangement in well characterized cases. The presence of the translocation, and the specific chromosome X gene disrupted, were inferred from the configuration of signals from chromosome-specific centromere probes, paints, and markers flanking each gene in preparations of interphase nuclei. Rearrangement was found in two cell lines and eight of nine tumor samples, including analysis of five touch imprints. This was consistent with cytogenetic data in four cases and reverse transcription polymerase chain reaction analysis using primers known to amplify both SYT-SSX1 and SYT-SSX2 transcripts. The transcripts were distinguished by restriction with LspI and SmaI. Contrary to previous suggestions, there was no obvious correlation between histological subtype and involvement of the SSX1 or SSX2 gene. These approaches could also be applied to the identification of tumor-free margins and metastatic disease

    Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma.

    No full text
    We demonstrate that the cytogenetically defined translocation t(X;18)(p11.2;q11.2) found in human synovial sarcoma results in the fusion of the chromosome 18 SYT gene to either of two distinct genes, SSX1 or SSX2, at Xp11.2. The SSX1 and SSX2 genes encode closely related proteins (81% identity) of 188 amino acids that are rich in charged amino acids. The N-terminal portion of each SSX protein exhibits homology to the Kruppel-associated box (KRAB), a transcriptional repressor domain previously found only in Kruppel-type zinc finger proteins. PCR analysis demonstrates the presence of SYT-SSX1 or SYT-SSX2 fusion transcripts in 29 of 32 of the synovial sarcomas examined, indicating that the detection of these hybrid transcripts by PCR may represent a very useful diagnostic method. Sequence analysis has demonstrated heterogeneity in the fusion transcripts with the formation of two distinct SYT-SSX1 fusion junctions and two distinct SYT-SSX2 fusion junctions

    The human SB1.8 gene (DXS423E) encodes a putative chromosome segregation protein conserved in lower eukaryotes and prokaryotes

    No full text
    We report that the human gene SB1.8 (DXS423E) encodes a protein of 1233 amino acids that is highly homologous (30% Identity) to the essential yeast protein SMC1 which is required for the segregation of chromosomes at mitosis. Both SB1.8 and SMC1 contain an N-terminal NTP binding site, a central coiled-coil region and a C-terminal helix-loop-helix domain, and have structural features in common with the force generating proteins myosin and kinesin. SB1.8 also exhibits regions of homology and overall structural similarity to the prokaryote (Mycoplasma hyorhinis) protein 115p. Thus SB1.8 and SMC1 are members of a highly conserved and ubiquitous family of proteins that appear to have a fundamental role In cell division. In addition we show that SB1.8 (DXS423E) maps to a cosmid contig that lies centromeric to the OATL2 locus at chromosome Xp11.2

    The t(X;1)(p11.2;q21.2) translocation in papillary renal sell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene

    No full text
    The specific chromosomal translocation t(X;1)(p11.2;q21.2) has been observed in human papillary renal cell carcinomas. In this study we demonstrated that this translocation results in the fusion of a novel gene designated PRCC at 1q21.2 to the TFE3 gene at Xp11.2. TFE3 encodes a member of the basic helix-loop-helix (bHLH) family of transcription factors originally identified by its ability to bind to μE3 elements in the immunoglobin heavy chain intronic enhancer. The translocation is predicted to result in the fusion of the N-terminal region of the PRCC protein, which includes a [proline-rich domain, to the entire TFE3 protein. Notably the generation of the chimaeric PRCC-TFE3 gene appears to be accompanied by complete loss of normal TFE3 transcripts. This work establishes that the disruption of transcriptional control by chromosomal translocation is important in the development of kidney carcinoma in addition to its previously established role in the aetiology of sarcomas and leukaemias
    corecore