1,428 research outputs found

    Automatic Landmarking for Non-cooperative 3D Face Recognition

    Get PDF
    This thesis describes a new framework for 3D surface landmarking and evaluates its performance for feature localisation on human faces. This framework has two main parts that can be designed and optimised independently. The first one is a keypoint detection system that returns positions of interest for a given mesh surface by using a learnt dictionary of local shapes. The second one is a labelling system, using model fitting approaches that establish a one-to-one correspondence between the set of unlabelled input points and a learnt representation of the class of object to detect. Our keypoint detection system returns local maxima over score maps that are generated from an arbitrarily large set of local shape descriptors. The distributions of these descriptors (scalars or histograms) are learnt for known landmark positions on a training dataset in order to generate a model. The similarity between the input descriptor value for a given vertex and a model shape is used as a descriptor-related score. Our labelling system can make use of both hypergraph matching techniques and rigid registration techniques to reduce the ambiguity attached to unlabelled input keypoints for which a list of model landmark candidates have been seeded. The soft matching techniques use multi-attributed hyperedges to reduce ambiguity, while the registration techniques use scale-adapted rigid transformation computed from 3 or more points in order to obtain one-to-one correspondences. Our final system achieves better or comparable (depending on the metric) results than the state-of-the-art while being more generic. It does not require pre-processing such as cropping, spike removal and hole filling and is more robust to occlusion of salient local regions, such as those near the nose tip and inner eye corners. It is also fully pose invariant and can be used with kinds of objects other than faces, provided that labelled training data is available

    ¿Nos encaminamos hacia un cisma de la música?

    Get PDF

    SYMORO+: A SYSTEM FOR THE SYMBOLIC MODELLING OF ROBOTS

    Get PDF
    International audienceThis paper presents the software package SYMORO+ for the automatic symbolic modelling of robots. This package permits to generate the direct geometric model, the inverse geometric model, the direct kinematic model, the inverse kinematic model, the dynamic model, and the inertial parameters identification models. The structure of the robots can be serial, tree structure or containing closed loops. The package runs on Sun stations and PC computers, it has been developed under MATHEMATICA and C language. In this paper we give an overview of the algorithms used in the different models, the computational cost of the dynamic models of the PUMA robot are given

    Le Tao de la bibliothèque numérique – bibliothèque sans bibliothécaire ?

    No full text
    Le texte essaie de décrire quelques facteurs de la transformation des métiers de la bibliothèque. D'où vient le concept de la bibliothèque numérique, quel est le moteur de cette évolution ? Quel a été l'impact sur les métiers et les compétences, comment accompagner l'évolution des activités sur le terrain, dans quelle direction aller

    Competency mapping and visualisation techniques in change management

    No full text
    Purpose: The article describes techniques that may facilitate change management in the library. Approach: The paper is based on practical experience and evidence from the INIST library department in France. Findings: Based on standard inventories of LIS professions and competencies, we present techniques for the mapping and visualisation of individual or team-centred job functions and skills. These techniques can help and facilitate communication, information and participation and are useful for staff development, workplace training and individual coaching. Originality: The proposed techniques combine the ECIA Euroguide of competencies, survey methods (mapping) and visualisation techniques as decision aids and participatory management tools for change management.L'article décrit des techniques qui peuvent faciliter la conduite de changement. Il s'agit d'une étude de cas de la bibliothèque de l'INIST-CNRS. La méthode présentée s'appuie sur une analyse et cartographie des compétences et sur l'utilisation des répertoires professionnels (répertoire des métiers du CNRS, REFERENS, Euroguide LIS ECIA/ADBS)

    The immunological synapse

    Get PDF
    T-cell activation requires interaction of T-cell antigen receptors with proteins of the major histocompatibility complex (antigen). This interaction takes place in a specialized cell-cell junction referred to as an immunological synapse. The immunological synapse contains at least two functional domains: a central cluster of engaged antigen receptors and a surrounding ring of adhesion molecules. The segregation of the T-cell antigen receptor (TCR) and adhesion molecules is based on size, with the TCR interaction spanning 15 nm and the lymphocyte-function-associated antigen-1 (LFA-1) interaction spanning 30-40 nm between the two cells. Therefore, the synapse is not an empty gap, but a space populated by both adhesion and signaling molecules. This chapter considers four aspects of the immunological synapse: the role of migration and stop signals, the role of the cytoskeleton, the role of self-antigenic complexes, and the role of second signals

    Evolution of the Cathode Spot Distribution in an Axial Magnetic Field Controlled Vacuum Arc at Long Contact Gap

    Get PDF
    The distribution of cathode spots in a CuCr25 vacuum arc controlled by an axial magnetic field and ignited on the lateral surface of the cathode is investigated for long gap distances, from the processing of high-speed video images. The processing method includes also estimating the current carried by a single spot and reconstructing the distribution of the current density at the cathode. Various distributions depending partly on the arc current are described

    Simulation of large photomultipliers for experiments in astroparticle physics

    Full text link
    We have developed an accurate simulation model of the large 9 inch photomultiplier tubes (PMT) used in water-Cherenkov detectors of cosmic-ray induced extensive air-showers. This work was carried out as part of the development of the Offline simulation software for the Pierre Auger Observatory surface array, but our findings may be relevant also for other astrophysics experiments that employ similar large PMTs. The implementation is realistic in terms of geometrical dimensions, optical processes at various surfaces, thin-film treatment of the photocathode, and photon reflections on the inner structure of the PMT. With the quantum efficiency obtained for this advanced model we have calibrated a much simpler and a more rudimentary model of the PMT which is more practical for massive simulation productions. We show that the quantum efficiency declared by manufactures of the PMTs is usually determined under conditions substantially different from those relevant for the particular experiment and thus requires careful (re)interpretation when applied to the experimental data or when used in simulations. In principle, the effective quantum efficiency could vary depending on the optical characteristics of individual events.Comment: 8 pages, 11 figure

    Multilinear Wavelets: A Statistical Shape Space for Human Faces

    Full text link
    We present a statistical model for 33D human faces in varying expression, which decomposes the surface of the face using a wavelet transform, and learns many localized, decorrelated multilinear models on the resulting coefficients. Using this model we are able to reconstruct faces from noisy and occluded 33D face scans, and facial motion sequences. Accurate reconstruction of face shape is important for applications such as tele-presence and gaming. The localized and multi-scale nature of our model allows for recovery of fine-scale detail while retaining robustness to severe noise and occlusion, and is computationally efficient and scalable. We validate these properties experimentally on challenging data in the form of static scans and motion sequences. We show that in comparison to a global multilinear model, our model better preserves fine detail and is computationally faster, while in comparison to a localized PCA model, our model better handles variation in expression, is faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
    corecore