3,417 research outputs found

    Criteria For Superfluid Instabilities of Geometries with Hyperscaling Violation

    Full text link
    We examine the onset of superfluid instabilities for geometries that exhibit hyperscaling violation and Lifshitz-like scaling at infrared and intermediate energy scales, and approach AdS in the ultraviolet. In particular, we are interested in the role of a non-trivial coupling between the neutral scalar supporting the scaling regime, and the (charged) complex scalar which condenses. The analysis focuses exclusively on unstable modes arising from the hyperscaling-violating portion of the geometry. Working at zero temperature, we identify simple analytical criteria for the presence of scalar instabilities, and discuss under which conditions a minimal charge will be needed to trigger a transition. Finite temperature examples are constructed numerically for a few illustrative cases.Comment: 41 pages, 7 figure

    Constraints on RG Flows from Holographic Entanglement Entropy

    Full text link
    We examine the RG flow of a candidate c-function, extracted from the holographic entanglement entropy of a strip-shaped region, for theories with broken Lorentz invariance. We clarify the conditions on the geometry that lead to a break-down of monotonic RG flows as is expected for generic Lorentz-violating field theories. Nevertheless we identify a set of simple criteria on the UV behavior of the geometry which guarantee a monotonic c-function. Our analysis can thus be used as a guiding principle for the construction of monotonic RG trajectories, and can also prove useful for excluding possible IR behaviors of the theory.Comment: 5 pages, no figure

    Controllability of Social Networks and the Strategic Use of Random Information

    Get PDF
    This work is aimed at studying realistic social control strategies for social networks based on the introduction of random information into the state of selected driver agents. Deliberately exposing selected agents to random information is a technique already experimented in recommender systems or search engines, and represents one of the few options for influencing the behavior of a social context that could be accepted as ethical, could be fully disclosed to members, and does not involve the use of force or of deception. Our research is based on a model of knowledge diffusion applied to a time-varying adaptive network, and considers two well-known strategies for influencing social contexts. One is the selection of few influencers for manipulating their actions in order to drive the whole network to a certain behavior; the other, instead, drives the network behavior acting on the state of a large subset of ordinary, scarcely influencing users. The two approaches have been studied in terms of network and diffusion effects. The network effect is analyzed through the changes induced on network average degree and clustering coefficient, while the diffusion effect is based on two ad-hoc metrics defined to measure the degree of knowledge diffusion and skill level, as well as the polarization of agent interests. The results, obtained through simulations on synthetic networks, show a rich dynamics and strong effects on the communication structure and on the distribution of knowledge and skills, supporting our hypothesis that the strategic use of random information could represent a realistic approach to social network controllability, and that with both strategies, in principle, the control effect could be remarkable

    Intertwined Orders in Holography: Pair and Charge Density Waves

    Full text link
    Building on [1], we examine a holographic model in which a U(1) symmetry and translational invariance are broken spontaneously at the same time. The symmetry breaking is realized through the St\"{u}ckelberg mechanism, and leads to a scalar condensate and a charge density which are spatially modulated and exhibit unidirectional stripe order. Depending on the choice of parameters, the oscillations of the scalar condensate can average out to zero, with a frequency which is half of that of the charge density. In this case the system realizes some of the key features of pair density wave order. The model also admits a phase with co-existing superconducting and charge density wave orders, in which the scalar condensate has a uniform component. In our construction the various orders are intertwined with each other and have a common origin. The fully backreacted geometry is computed numerically, including for the case in which the theory contains axions. The latter can be added to explicitly break translational symmetry and mimic lattice-type effects.Comment: 37 pages, 17 figure

    Correlation Functions and Hidden Conformal Symmetry of Kerr Black Holes

    Get PDF
    Extremal scalar three-point correlators in the near-NHEK geometry of Kerr black holes have recently been shown to agree with the result expected from a holographically dual non-chiral two-dimensional conformal field theory. In this paper we extend this calculation to extremal three-point functions of scalars in a general Kerr black hole which need not obey the extremality condition M=JM=\sqrt{J}. It was recently argued that for low frequency scalars in the Kerr geometry there is a dual conformal field theory description which determines the interactions in this regime. Our results support this conjecture. Furthermore, we formulate a recipe for calculating finite-temperature retarded three-point correlation functions which is applicable to a large class of (even non-extremal) correlators, and discuss the vanishing of the extremal couplings.Comment: 16 page

    Backreacted DBI Magnetotransport with Momentum Dissipation

    Full text link
    We examine magnetotransport in a holographic Dirac-Born-Infeld model, taking into account the effects of backreaction on the geometry. The theory we consider includes axionic scalars, introduced to break translational symmetry and generate momentum dissipation. The generic structure of the DC conductivity matrix for these theories is extremely rich, and is significantly more complex than that obtained in the probe approximation. We find new classes of black brane solutions, including geometries that exhibit Lifshitz scaling and hyperscaling violation, and examine their implications on the transport properties of the system. Depending on the choice of theory parameters, these backgrounds can lead to metallic or insulating behavior. Negative magnetoresistance is observed in a family of dynoic solutions. Some of the new backreacted geometries also support magnetic-field-induced metal-insulator transitions.Comment: 34 pages, 9 figures; v2: references added, minor improvements, to appear in JHE

    Dilaton Dynamics from Production of Tensionless Membranes

    Get PDF
    In this paper we consider classical and quantum corrections to cosmological solutions of 11D SUGRA coming from dynamics of membrane states. We first consider the supermembrane spectrum following the approach of Russo and Tseytlin for consistent quantization. We calculate the production rate of BPS membrane bound states in a cosmological background and find that such effects are generically suppressed by the Planck scale, as expected. However, for a modified brane spectrum possessing enhanced symmetry, production can be finite and significant. We stress that this effect could not be anticipated given only a knowledge of the low-energy effective theory. Once on-shell, inclusion of these states leads to an attractive force pulling the dilaton towards a fixed point of S-duality, namely gs=1g_s=1. Although the SUGRA description breaks down in this regime, inclusion of the enhanced states suggests that the center of M-theory moduli space is a dynamical attractor. Morever, our results seem to suggest that string dynamics does indeed favor a vacuum near fixed points of duality.Comment: 39 pages, 7 figures, minor corrections and reference adde

    Holographic Fermions in Striped Phases

    Full text link
    We examine the fermionic response in a holographic model of a low temperature striped phase, working for concreteness with the setup we studied in [Cremonini:2016rbd,Cremonini:2017usb], in which a U(1) symmetry and translational invariance are broken spontaneously at the same time. We include an ionic lattice that breaks translational symmetry explicitly in the UV of the theory. Thus, this construction realizes spontaneous crystallization on top of a background lattice. We solve the Dirac equation for a probe fermion in the associated background geometry using numerical techniques, and explore the interplay between spontaneous and explicit breaking of translations. We note that in our model the breaking of the U(1) symmetry doesn't play a role in the analysis of the fermionic spectral function. We investigate under which conditions a Fermi surface can form and focus in particular on how the ionic lattice affects its structure. When the ionic lattice becomes sufficiently strong the spectral weight peaks broaden, denoting a gradual disappearance of the Fermi surface along the symmetry breaking direction. This phenomenon occurs even in the absence of spontaneously generated stripes. The resulting Fermi surface appears to consist of detached segments reminiscent of Fermi arcs.Comment: v2: 43 pages, 20 figures. Major revision, title and abstract modified, new discussion added, conclusions unchanged. To appear in JHE
    • …
    corecore