We examine the fermionic response in a holographic model of a low temperature
striped phase, working for concreteness with the setup we studied in
[Cremonini:2016rbd,Cremonini:2017usb], in which a U(1) symmetry and
translational invariance are broken spontaneously at the same time. We include
an ionic lattice that breaks translational symmetry explicitly in the UV of the
theory. Thus, this construction realizes spontaneous crystallization on top of
a background lattice. We solve the Dirac equation for a probe fermion in the
associated background geometry using numerical techniques, and explore the
interplay between spontaneous and explicit breaking of translations. We note
that in our model the breaking of the U(1) symmetry doesn't play a role in the
analysis of the fermionic spectral function. We investigate under which
conditions a Fermi surface can form and focus in particular on how the ionic
lattice affects its structure. When the ionic lattice becomes sufficiently
strong the spectral weight peaks broaden, denoting a gradual disappearance of
the Fermi surface along the symmetry breaking direction. This phenomenon occurs
even in the absence of spontaneously generated stripes. The resulting Fermi
surface appears to consist of detached segments reminiscent of Fermi arcs.Comment: v2: 43 pages, 20 figures. Major revision, title and abstract
modified, new discussion added, conclusions unchanged. To appear in JHE