107 research outputs found
Regular graphs of odd degree are antimagic
An antimagic labeling of a graph with edges is a bijection from
to such that for all vertices and , the sum of
labels on edges incident to differs from that for edges incident to .
Hartsfield and Ringel conjectured that every connected graph other than the
single edge has an antimagic labeling. We prove this conjecture for
regular graphs of odd degree.Comment: 5 page
Linear Choosability of Sparse Graphs
We study the linear list chromatic number, denoted \lcl(G), of sparse
graphs. The maximum average degree of a graph , denoted \mad(G), is the
maximum of the average degrees of all subgraphs of . It is clear that any
graph with maximum degree satisfies \lcl(G)\ge
\ceil{\Delta(G)/2}+1. In this paper, we prove the following results: (1) if
\mad(G)<12/5 and , then \lcl(G)=\ceil{\Delta(G)/2}+1, and
we give an infinite family of examples to show that this result is best
possible; (2) if \mad(G)<3 and , then
\lcl(G)\le\ceil{\Delta(G)/2}+2, and we give an infinite family of examples to
show that the bound on \mad(G) cannot be increased in general; (3) if is
planar and has girth at least 5, then \lcl(G)\le\ceil{\Delta(G)/2}+4.Comment: 12 pages, 2 figure
Hamiltonicity in connected regular graphs
In 1980, Jackson proved that every 2-connected -regular graph with at most
vertices is Hamiltonian. This result has been extended in several papers.
In this note, we determine the minimum number of vertices in a connected
-regular graph that is not Hamiltonian, and we also solve the analogous
problem for Hamiltonian paths. Further, we characterize the smallest connected
-regular graphs without a Hamiltonian cycle.Comment: 5 page
- …