research

Regular graphs of odd degree are antimagic

Abstract

An antimagic labeling of a graph GG with mm edges is a bijection from E(G)E(G) to {1,2,,m}\{1,2,\ldots,m\} such that for all vertices uu and vv, the sum of labels on edges incident to uu differs from that for edges incident to vv. Hartsfield and Ringel conjectured that every connected graph other than the single edge K2K_2 has an antimagic labeling. We prove this conjecture for regular graphs of odd degree.Comment: 5 page

    Similar works

    Full text

    thumbnail-image

    Available Versions