1,463 research outputs found

    Development and Validation of NDE Standards for NASAs Advanced Composites Project

    Get PDF
    The adoption of composite materials in aircraft manufacturing for use in structural applications continues to increase but is still relatively new to the industry. Composite components have large development and certification costs in comparison to metallic structures. Traditional methods of nondestructive evaluation (NDE) used for isotropic materials such as metals may not be adequate for composite applications and therefore is a contributing factor to the cost and complexity of developing new structural composites. Additionally, the defects of interest in composite materials are significantly different from metals. Thus, good quality composite reference standards are essential to obtaining reliable and quantifiable NDE results. Ideally, reference standards contain flaws or damage whose NDE indications most closely represent those created by actual flaws/damage. They should also be easy to duplicate and inexpensive to manufacture. NASAs Advanced Composites Project, working with industry partners, developed a set of composite standards that contain a range of validated defects representing those typically found in aerospace composite materials. This paper will provide an overview of the standards fabricated, the manufacturing plans used to fabricate them, the types of defects included, and validation testing that has performed. Also discussed is an inter-laboratory round-robin test that is being performed on these standards. The paper will describe a guidance document being compiled to outline relevant inspection procedures for challenging and critical defects unique to composites where conventional techniques may not be appropriate

    A Penny Saved Is Mobility Earned

    Get PDF
    Analyzes data on how one's or one's parents' level of savings affects economic mobility, by income; examines savings incentives and disincentives in the federal tax code and public assistance programs; and recommends policy options to encourage savings

    The Superiority of Direct Proof of Monopoly Power and Anticompetitive Effects in Antitrust Cases Involving Delayed Entry of Generic Drugs

    Get PDF

    One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment

    Full text link
    Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. We first use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times

    Wire Crimp Termination Verification Using Ultrasonic Inspection

    Get PDF
    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed

    Marking Electrical Wiring With Condition Indicators

    Get PDF
    A method is provided for marking electrical Wiring with condition indicators. One or more markers are added to one or both of the insulative material and a surface of an electrical conductor such that it bonds thereto. Each marker is capable of emanating into a surrounding atmospheric environment as a gaseous effluent in response to a specific condition experienced by the electrical conductor

    Ultrasonic Inspection to Quantify Failure Pathologies of Crimped Electrical Connections

    Get PDF
    Previous work has shown that ultrasonic inspection provides a means of assessing electrical crimp quality that ensures the electrical and mechanical integrity of an initial crimp before the installation process is completed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination was shown to correlate with the results of destructive pull tests, which is a standard for assessing crimp wire junction quality. Of additional concern are crimps made at high speed assembly lines for wiring harnesses, which are used for critical applications, such as in aircraft. During high-speed assembly it is possible that many faulty crimps go undetected until long after assembly, and fail in service. The position and speed of the crimping jaw become factors as the high-speed crimp is formed. The work presented in this paper is designed to cover the more difficult and more subtle area of high-speed crimps by taking into account the rate change of the measurements. Building on the previous work, we present an analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse that is shown to correlate to the gauge of the crimp/ferrule combination and the position of the crimping jaw. Results demonstrating the detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, are presented. The ability of this technique to estimate crimp height, a mechanical measure of crimp quality, is discussed

    The Application of Ultrasonic Inspection to Crimped Electrical Connections

    Get PDF
    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process
    corecore