2,768 research outputs found

    Characterisation of the Etching Quality in Micro-Electro-Mechanical Systems by Thermal Transient Methodology

    Get PDF
    Our paper presents a non-destructive thermal transient measurement method that is able to reveal differences even in the micron size range of MEMS structures. Devices of the same design can have differences in their sacrificial layers as consequence of the differences in their manufacturing processes e.g. different etching times. We have made simulations examining how the etching quality reflects in the thermal behaviour of devices. These simulations predicted change in the thermal behaviour of MEMS structures having differences in their sacrificial layers. The theory was tested with measurements of similar MEMS devices prepared with different etching times. In the measurements we used the T3Ster thermal transient tester equipment. The results show that deviations in the devices, as consequence of the different etching times, result in different temperature elevations and manifest also as shift in time in the relevant temperature transient curves.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Two philosophies for solving non-linear equations in algebraic cryptanalysis

    Get PDF
    Algebraic Cryptanalysis [45] is concerned with solving of particular systems of multivariate non-linear equations which occur in cryptanalysis. Many different methods for solving such problems have been proposed in cryptanalytic literature: XL and XSL method, Gröbner bases, SAT solvers, as well as many other. In this paper we survey these methods and point out that the main working principle in all of them is essentially the same. One quantity grows faster than another quantity which leads to a “phase transition” and the problem becomes efficiently solvable. We illustrate this with examples from both symmetric and asymmetric cryptanalysis. In this paper we point out that there exists a second (more) general way of formulating algebraic attacks through dedicated coding techniques which involve redundancy with addition of new variables. This opens numerous new possibilities for the attackers and leads to interesting optimization problems where the existence of interesting equations may be somewhat deliberately engineered by the attacker

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϔceR_{N}I_{c}/\epsilon_{c} and kBT/ϔck_{B}T/\epsilon_{c} where ϔc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe

    Resistive transport in a mesoscopic proximity superconductor

    Full text link
    We review transport measurements in a normal metal (N) in contact with one or two superconducting (S) islands. From the experiment, we distinguish the Josephson coupling, the mesoscopic fluctuations and the proximity effect. In a loop-shaped N conductor, we observe large h/2e-periodic magnetoresistance oscillations that decay with temperature T with a 1/T power-law. This behaviour is the signature of the long-range coherence of the low-energy electron pairs induced by the Andreev reflection at the S interface. At temperature and voltage below the Thouless energy ℏD/L2\hbar D / L^2, we observe the re-entrance of the metallic resistance. Experimental results agree with the linearized quasiclassical theory.Comment: 8 pages, 6 included epsf figures, Invited paper at the LT21 Conference, Praha, August 1996. To appear in Czech. J. of Phys. 46, Part S6 (1996

    Systematic Construction of Nonlinear Product Attacks on Block Ciphers

    Get PDF
    A major open problem in block cipher cryptanalysis is discovery of new invariant properties of complex type. Recent papers show that this can be achieved for SCREAM, Midori64, MANTIS-4, T-310 or for DES with modified S-boxes. Until now such attacks are hard to find and seem to happen by some sort of incredible coincidence. In this paper we abstract the attack from any particular block cipher. We study these attacks in terms of transformations on multivariate polynomials. We shall demonstrate how numerous variables including key variables may sometimes be eliminated and at the end two very complex Boolean polynomials will become equal. We present a general construction of an attack where multiply all the polynomials lying on one or several cycles. Then under suitable conditions the non-linear functions involved will be eliminated totally. We obtain a periodic invariant property holding for any number of rounds. A major difficulty with invariant attacks is that they typically work only for some keys. In T-310 our attack works for any key and also in spite of the presence of round constants

    A thermostable trilayer resist for niobium lift-off

    Full text link
    We have developped a novel lift-off process for fabrication of high quality superconducting submicron niobium structures. The process makes use of a thermostable polymer with a high transition temperature T_{g}= 235 C and an excellent chemical stability. The superconducting critical temperature of 100 nm wide niobium lines is above 7 K. An example of shadow evaporation of a Nb-Cu submicron hybrid structure is given. A potential application of this process is the fabrication of very small single electron devices using refratory metals.Comment: 6 pages, 6 eps figures, submitted to Journal of Vacuum Science and Technology
    • 

    corecore