21 research outputs found

    Scalable 3D video of dynamic scenes

    Get PDF
    In this paper we present a scalable 3D video framework for capturing and rendering dynamic scenes. The acquisition system is based on multiple sparsely placed 3D video bricks, each comprising a projector, two grayscale cameras, and a color camera. Relying on structured light with complementary patterns, texture images and pattern-augmented views of the scene are acquired simultaneously by time-multiplexed projections and synchronized camera exposures. Using space-time stereo on the acquired pattern images, high-quality depth maps are extracted, whose corresponding surface samples are merged into a view-independent, point-based 3D data structure. This representation allows for effective photo-consistency enforcement and outlier removal, leading to a significant decrease of visual artifacts and a high resulting rendering quality using EWA volume splatting. Our framework and its view-independent representation allow for simple and straightforward editing of 3D video. In order to demonstrate its flexibility, we show compositing techniques and spatiotemporal effect

    Robust watermarking of point-sampled geometry

    Get PDF
    We present a new scheme for digital watermarking of point-sampled geometry based on spectral analysis. By extending existing algorithms designed for polygonal data to unstructured point clouds, our method is particularly suited for scanned models, where the watermark can be directly embedded in the raw data obtained from the 3D acquisition device. To handle large data sets efficiently, we apply a fast hierarchical clustering algorithm that partitions the model into a set of patches. Each patch is mapped into the space of eigenfunctions of an approximate Laplacian operator to obtain a decomposition of the patch surface into discrete frequency bands. The watermark is then embedded into the low frequency components to minimize visual artifacts in the model geometry. During extraction, the target model is resampled at optimal resolution using an MLS projection. After extracting a watermark from this model, the corresponding bit stream is analyzed using statistical methods based on correlation. We have applied our method to a number of point-sampled models of different geometric and topological complexity. These experiments show that our watermarking scheme is robust against numerous attacks, including low-pass filtering, resampling, affine transformations, cropping, additive random noise, and combinations of the above
    corecore