976 research outputs found

    Thermoelectric transport through strongly correlated quantum dots

    Get PDF
    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, KeK_{\rm e}, to the thermal conductance, the thermopower, SS, and the electrical conductance, GG, of a quantum dot as a function of both temperature, TT, and gate voltage, vg{\rm v}_g, for strong, intermediate and weak Coulomb correlations, UU, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures T1(vg)T_{1}({\rm v}_g) and T2(vg)T_{2}({\rm v}_g) with T1<T2T_{1}< T_{2}. Such sign changes in S(T)S(T) are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.Comment: 21 pages, 12 figures; published versio

    The numerical renormalization group method for quantum impurity systems

    Full text link
    In the beginning of the 1970's, Wilson developed the concept of a fully non-perturbative renormalization group transformation. Applied to the Kondo problem, this numerical renormalization group method (NRG) gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG has been later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method including some guidelines of how to calculate physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean field theory.Comment: 55 pages, 27 figures, submitted to Rev. Mod. Phy

    Transport Coefficients of the Anderson Model via the Numerical Renormalization Group

    Full text link
    The transport coefficients of the Anderson model are calculated by extending Wilson's NRG method to finite temperature Green's functions. Accurate results for the frequency and temperature dependence of the single--particle spectral densities and transport time τ(ω,T)\tau(\omega,T) are obtained and used to extract the temperature dependence of the transport coefficients in the strong correlation limit. The low temperature anomalies in the resistivity, ρ(T)\rho(T), thermopower, S(T)S(T), thermal conductivity κ(T)\kappa(T) and Hall coefficient, RH(T)R_{H}(T), are discussed. All quantities exhibit the expected Fermi liquid behaviour at low temperature with power law dependecies on T/TKT/T_{K} in very good agreement with analytic results based on Fermi liquid theory. Scattering of conduction electrons in higher, l>0l>0, angular momentum channels is also considered and an expression is derived for the corresponding transport time and used to discuss the influence of non--resonant scattering on the transport properties.Comment: 45 pages, RevTeX, 28 figures, available on reques

    Real-Time-RG Analysis of the Dynamics of the Spin-Boson Model

    Full text link
    Using a real-time renormalization group method we determine the complete dynamics of the spin-boson model with ohmic dissipation for coupling strengths α0.10.2\alpha\lesssim 0.1-0.2. We calculate the relaxation and dephasing time, the static susceptibility and correlation functions. Our results are consistent with quantum Monte Carlo simulations and the Shiba relation. We present for the first time reliable results for finite cutoff and finite bias in a regime where perturbation theory in α\alpha or in tunneling breaks down. Furthermore, an unambigious comparism to results from the Kondo model is achieved.Comment: 4 pages, 5 figures, 1 tabl

    Out of equilibrium transport through an Anderson impurity: Probing scaling laws within the equation of motion approach

    Full text link
    We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing in the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G_2(T,V) to test several scaling laws. We find that G_2(T,V)/G_2(T,0) is a universal function of both eV/T_K and T/T_K, being T_K the Kondo temperature. The effect of an in plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting \Delta, the computed differential conductance peak splitting depends only on \Delta/T_K, and for large fields approaches the value of 2\Delta . Besides the traditional two leads setup, we also consider other configurations that mimics recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as \ln(eV/T_K). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.Comment: 9 pages, 7 figure

    Renormalization Group Approach to Non-equilibrium Green Functions in Correlated Impurity Systems

    Full text link
    We present a technique for calculating non-equilibrium Green functions for impurity systems with local interactions. We use an analogy to the calculation of response functions in the x-ray problem.The initial state and the final state problems, which correspond to the situations before and after the disturbance (an electric or magnetic field, for example) is suddenly switched on, are solved with the aid of Wilson's momentum shell renormalization group. The method is illustrated by calculating the non-equilibrium dynamics of the ohmic two-state problem.Comment: 7 pages, 2 figure

    Inhibitor Specificity via Protein Dynamics Insights from the Design of Antibacterial Agents Targeted Against Thymidylate Synthase

    Get PDF
    AbstractStructure-based drug design of species-specific inhibitors generally exploits structural differences in proteins from different organisms. Here, we demonstrate how achieving specificity can be aided by targeting differences in the dynamics of proteins. Thymidylate synthase (TS) is a good target for anticancer agents and a potential target for antibacterial agents. Most inhibitors are folate-analogs that bind at the folate binding site and are not species specific. In contrast, α156 is not a folate-analog and is specific for bacterial TS; it has been shown crystallographically to bind in a nonconserved binding site. Docking calculations and crystal structure-based estimation of the essential dynamics of TSs from five different species show that differences in the dynamics of TSs make the active site more accessible to α156 in the prokaryotic than in the eukaryotic TSs and thereby enhance the specificity of α156

    Rehabilitation of COPD patients: which training modality?

    Get PDF
    Non pharmacological therapy has been gaining more interest and has been evolving rapidly over the last decade as an essential part of therapy for COPD patients. Pulmonary Rehabilitation (PR), the most important non pharmacological treatment in patients with COPD, has a primary goal: to achieve the highest possible level of individual exercise tolerance, thus reducing the primary and/or secondary health care utilisation. The aim of the present review is to focus the role of exercise training in these patients as well as to address the question on which training methods are the most beneficial. We have therefore undertaken a MEDLINE-based search including the terms: pulmonary rehabilitation, exercise, lung disease/obstructive. Several strategies based on endurance or strength training are nowadays implemented during PR programmes in order to maximise the benefits for each patient. The impaired function of ambulation muscles causing breathlessness as one of the more frequent symptoms in many COPD, suggests that training the lower extremities is the most important goal to achieve during pulmonary rehabilitation of these patients. On the other hand, as muscle strength appears to be an independent contributor to survival and utilisation of health care resources, it seems largely justified also to include this further modality in the PR program of these patients. In conclusion, both modalities are effective and useful for COPD patients. However, whether resistance training should be administered to all COPD and which is the optimal length of strength training still needs to be elucidated

    Thermoelectric effects in Kondo correlated quantum dots

    Full text link
    In this Letter we study thermoelectric effects in ultra small quantum dots. We study the behaviour of the thermopower, Peltier coefficient and thermal conductance both in the sequencial tunneling regime and in the regime where Kondo correlations develope. Both cases of linear response and non-equilibrium induced by strong temperature gradients are considered. The thermopower is a very sensitive tool to detect Kondo correlations. It changes sign both as a function of temperature and temperature gradient. We also discuss violations of the Wiedemann-Franz law.Comment: 7 pages; 5 figure
    corecore