3 research outputs found

    Satellite Remote Sensing of Tropical Cyclones

    Get PDF
    This chapter provides a review on satellite remote sensing of tropical cyclones (TCs). Applications of satellite remote sensing from geostationary (GEO) and low earth orbital (LEO) platforms, especially from passive microwave (PMW) sensors, are focused on TC detection, structure, and intensity analysis as well as precipitation patterns. The impacts of satellite remote sensing on TC forecasts are discussed with respect to helping reduce the TC\u27s track and intensity forecast errors. Finally, the multiā€satelliteā€sensor data fusion technique is explained as the best way to automatically monitor and track the global TC\u27s position, structure, and intensity

    Tropical Cyclone Climatology from Satellite Passive Microwave Measurements

    No full text
    The satellite passive microwave (PMW) sensor brightness temperatures (TBs) of all tropical cyclones (TCs) from 1987–2012 have been carefully calibrated for inter-sensor frequency differences, center position fixing using the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) scheme, and application of the Backus–Gilbert interpolation scheme for better presentation of the TC horizontal structure. With additional storm motion direction and the 200–850 hPa wind shear direction, a unique and comprehensive TC database is created for this study. A reliable and detailed climatology for each TC category is analyzed and discussed. There is significant annual variability of the number of storms at hurricane intensity, but the annual number of all storms is relatively stable. Results based on the analysis of the 89 GHz horizontal polarization TBs over oceans are presented in this study. An eyewall contraction is clearly displayed with an increase in TC intensity. Three composition schemes are applied to present a reliable and detailed TC climatology at each intensity category and its geographic characteristics. The global composition relative to the North direction is not able to lead a realistic structure for an individual TC. Enhanced convection in the down-motion quadrants relative to direction of TC motion is obvious for Cat 1–3 TCs, while Cat 4–5 TCs still have a concentric pattern of convection within 200 km radius. Regional differences are evident for weak storms. Results indicate the direction of TC movement has more impact on weak storms than on Cat 4–5 TCs. A striking feature is that all TCs have a consistent pattern of minimum TBs at 89 GHz in the downshear left quadrant (DSLQ) for the northern hemisphere basins and in the downshear right quadrant (DSRQ) for the southern hemisphere basin, regarding the direction of the 200–850 hPa wind shear. Tropical depression and tropical storm have the minimum TBs in the downshear quadrants. The axis of the minimum TBs is slightly shifted toward the vertical shear direction. There is no geographic variation of storm structure relative to the vertical wind shear direction except over the southern hemisphere which shows a mirror image of the storm structure over the northern hemisphere. This study indicates that regional variation of storm structure relative to storm motion direction is mainly due to differences of the vertical wind shear direction among these basins. Results demonstrate the direction of the 200–850 hPa wind shear plays a critical role in TC structure
    corecore