
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 7

Satellite Remote Sensing of Tropical Cyclones

Song Yang and Joshua Cossuth

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64114

Provisional chapter

Satellite Remote Sensing of Tropical Cyclones

Song Yang and Joshua Cossuth

Additional information is available at the end of the chapter

Abstract

This chapter provides a review on satellite remote sensing of tropical cyclones (TCs).
Applications  of  satellite  remote  sensing  from  geostationary  (GEO)  and  low  earth
orbital  (LEO)  platforms,  especially  from  passive  microwave  (PMW)  sensors,  are
focused on TC detection,  structure,  and intensity  analysis  as  well  as  precipitation
patterns. The impacts of satellite remote sensing on TC forecasts are discussed with
respect to helping reduce the TC's track and intensity forecast errors. Finally, the multi‐
satellite‐sensor data fusion technique is explained as the best way to automatically
monitor and track the global TC's position, structure, and intensity.

Keywords: tropical cyclone, hurricane, typhoon, rainfall, intensity and track, TC mon‐
itoring and prediction, satellite remote sensing

1. Introduction

The tropical cyclone (TC) is among the most severe weather systems, with the potential for
catastrophic damage to human lives, society, transportation, properties, etc. For example,
Hurricane Katrina during August 23–31, 2005 with a maximum wind speed of 280 km/hr
impacted most of south‐east US regions and landed in the Greater New Orleans. It is the
costliest hurricane in US history which killed an estimated 1245–1836 people and caused
damages of $149 billion [1, 2]. Hurricane Sandy during October 22–November 2, 2012 had a
maximum sustained wind speed of 185 km/hr. It led to the death of 233 people and damages
of $75 billion [1, 2]. Severe TCs can attain very strong wind speeds greater than 260 km/hr
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and bring heavy precipitation. Most TC damage is caused by the force of its strong wind and
flash flooding. TCs normally initiate over tropical oceans with Sea surface temperature (SST)
>26°C to a depth of 60 meter and weak vertical wind shears [3, 4]. It can intensify rapidly
under favored environmental conditions. Figure 1 shows locations of the historical TCs and
their associated intensities observed by satellite passive microwave (PMW) sensors during
1987–2012. The storm basins defined by Joint Typhoon Warning Center (JTWC) are overlaid
for North Atlantic (AL), Central North Pacific (CP), Eastern North Pacific (EP), Northern
Indian Ocean (IO), Southern Hemisphere (SH), and Western North Pacific (WP). The satellite‐
based TC distribution patterns matched very well with the JTWC's best track dataset.

Figure 1. Tropical cyclone (TC) climatology from satellite passive microwave sensor measurements during 1987–2012.
The sizes of the circles are proportional to their eye radius, while the colors show TC's intensity with warmer color for
more intense TC. AL, CP, EP, IO, SH, and WP defined by Joint Typhoon Warning Center (JTWC) are used for storm
basins of North Atlantic, Central North Pacific, Eastern North Pacific, Northern Indian Ocean, Southern Hemisphere
and Western North Pacific, respectively.

Because a TC's life span is mostly far away from land, remote sensing—especially the satellite
remote sensing—is the only way to detect and monitor global TC activities. The television
infrared observation satellite (TIROS) launched on April 1, 1960 was the first experimental
project of the satellite's feasibility for study of the Earth [5]. It was the first satellite used for TC
monitoring and tracking [6]. The geostationary operational environmental satellite (GOES) is
the key element of the United States’ weather monitoring and forecasting [7]. It can be used
for weather forecasting, severe storm tracking, and meteorological research. Figure 2 shows
the first images of GOES‐1 at 1645 GMT on October 25, 1975. The advantages of geostationary
satellites (GEO) are frequent observations over a large domain. Other countries such as China,
Europe, South Korea, and Japan have their own meteorological satellite programs for improv‐
ing weather monitoring and forecasting. The advanced sensors onboard operational geosta‐
tionary satellites such as Japanese Himawari‐8 and US upcoming GOES‐R will be more
powerful for providing measurements at more channels with higher spatial resolutions and
more observing frequencies [7, 8].
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Figure 2. The first image obtained from the GOES‐1 satellite, October 25, 1975 1645 GMT (adapted from NOAA photo
library http://www.photolib.noaa.gov/).

Low Earth orbit (LEO) polar orbital satellites provide observations over a location only twice
per day. However, they can measure the 3‐D meteorological conditions needed for improving
weather forecasts and monitoring. Especially for TC monitoring and forecasts, conical scan
PMW sensors onboard the near‐circular Sun‐synchronous and near‐polar orbital satellites are
extremely important and widely applied in operations. This conical scan pattern of PMW
measurements provides for a consistent spatial resolution which is crucial in analysis of TC
detection, intensity, structure, and monitoring [9, 10]. The first Special Sensor Microwave
Imager (SSM/I) onboard the US defense meteorological satellite program (DMSP)‐F8 was
launched on June 18, 1987 [11]. Its predecessor was the scanning multichannel microwave
radiometer (SMMR), which was on the Seasat and Nimbus 7 satellites launched in 1978 [12].
SSM/I was later evolved into the Special Sensor Microwave Imager Sounder (SSMIS), which
provides additional measurements such as atmospheric temperature and moisture profiles
[13]. The first SSMIS (F16) was launched on October 18, 2003, while the latest SSMIS (F19) was
launched on April 3, 2014.

Other similar PMW sensors commonly used for TC monitoring and forecasts are the Advanced
Microwave Scanning Radiometer‐EOS (AMSR‐E) onboard Aqua satellite and its following on
the Advanced Microwave Scanning Radiometer 2 (AMSR‐2) onboard the Global Change
Observation Mission 1st‐Water (GCOM‐W1) [14, 15]; the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI) was launched on November 27, 1997 and its following on
Global Precipitation Measurement (GPM) Microwave Imager (GMI) was launched on Febru‐
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ary 27, 2014 [16]. The cross‐scan microwave sensors such as the Advanced Microwave
Sounding Unit (AMSU) onboard NOAA‐15 satellite launched on May 13,1998 and its next
generation Advanced Technology Microwave Sounder (ATMS) onboard the National Polar‐
orbiting Partnership (Suomi‐NPP) launched on October 28, 2011 have also been applied in TC
monitoring and intensity measurements because of their superior spatial resolution [17–19].
These PMW sensors are critical in satellite‐based rainfall retrievals [20] that are utilized in TC
precipitation observations and forecasts [21].

Section 2 discusses TC detections from satellite observations, while Sections 3 and 4 describe
analysis of TC structure and intensity with satellite remote sensing. Section 5 is about TC
rainfall while Section 6 discusses the impacts of satellite remote sensing on improving TC
forecasts. Global TC monitoring and tracking with multi‐satellite sensors are discussed in
Section 7. Section 8 presents a brief summary of history, applications, and impacts of satellite
remote sensing on TC structure, intensity, forecast, and monitoring.

2. Identification of TC using satellite measurements

The TC is a highly organized weather system which can be easily detected by satellite
observations. The deep clouds of TCs are shown in GEO Infrared (IR) measurements as low
temperatures compared with cloud‐free or thin cloudy areas because the IR sensors can only
detect the cloud top without measuring anything underneath it, while the satellite Visible (VIS)
observations show high values of reflectivity because of the clouds’ high albedo. The GEO
satellite is an ideal platform to detect TC activities because of its frequent measurements every
30 minutes, and even 10 minutes for next generation GEO sensors such as the Japanese
Himawari‐8 and the upcoming US GOES‐R sensors. Due to the unique TC eyewall feature, it
is easy to identify the position and lifecycle of a well‐developed TC because of its apparent eye
location where cloud‐free or thin clouds exist. Figure 3 presents an example of observations
over West Pacific from Himawari‐8 IR. It is apparent that two typhoons (Goni and Atsani) are
clearly displayed at 1800 UTC August 18, 2015.

Figure 3. Japanese satellite Himawari‐8 IR image of Typhoons Goni and Atsani at 1800 UTC Aug 18, 2015 (adapted
from the Joint Typhoon Warning Center (JTWC) at http://www.usno.navy.mil/JTWC).
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There are limitations in satellite IR/VIS observations at early stages of storm development when
its center is not obvious or overcast. The widely used analysis method for satellite remote
sensing of TC is called the Dvorak technique [22]. It is based on combinations of the enhanced
IR image analysis and detection of cloud shapes at different stages of storm development.
Applications of the LEO satellite PMW remote sensing lead to large improvements in TC's
detection in terms of structure, location, and intensity because of the PMW sensor's superior
spatial resolution and sensitivity of cloud vertical profiles due to its capability to penetrate
clouds. The PMW imagery at high‐frequency channels shows a depletion of brightness
temperatures (TBs) over deep cloud areas where the scattering effects of frozen hydrometeors
on microwave radiance exist. Figure 4 presents an example of the multi‐sensor combined four
panels of IR/VIS and PMW high‐frequency channel imagery for Typhoon Mindulle over west
Pacific at 1800Z of June 26, 2004 from Naval Research Laboratory‐Monterey (NRL‐MRY) TC
web page at http://www.nrlmry.navy.mil/TC.html. This kind of multi‐panel display is used for
a better analysis of the TC intensity, position, and structure. The upper‐left panel is the GOES
IR image, while the upper‐right panel is the enhanced IR image (VIS imagery is used in daytime
when it is available) with the Dvorak method for improved TC analysis. For this TC case, the
overcast blocks a good view of the TC center from IR observations. The enhanced image is
better in displaying the potential TC center, but is still not able to show the TC eyewall and

Figure 4. Images of Hurricane Mindulle at 1800UTC June 26, 2004 from GOES‐9 IR and AQUA AMSR‐E. Top left pan‐
el: GOES‐9 IR; top right panel: enhanced TC IR analysis known as the Dvorak hurricane curve for tropical cyclone
classification; bottom left panel: AMSR‐E 89H GHz; and bottom right pane: AMSR‐E composite (adapted from the
NRLMRY‐TC web page at http://www.nrlmry.gov/TC.html).
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center. The bottom‐left panel is an image of the AMSR‐E 89H GHz channel, which clearly
shows positions of the TC eyewall and center as well as convection cells. The bottom‐right
panel is a composite image of the PMW polarization corrected temperature (PCT) in red, 85
GHz or 89 GHz vertical polarization in green, and horizontal polarization in blue [23]. It can
provide additional information of the TC cloud patterns important to TC's overall structure
and organization, especially for a potential low‐level circulation center. Therefore, this multi‐
sensor‐panel imagery can be applied for better analysis of these important TC characteristics
such as eyewall development, formation of concentric eyewall, convective zones and cells, rain
band formation, central dense overcast, shear, and low‐level center.

3. TC structure analysis

Soon after the first satellite weather observations became available, routine TC intensity studies
from this imagery began [23]. Determining the TC's center position was the only reliably
produced operational use of TC satellite analysis until the influential work of Dvorak [22] in
1972. Dvorak developed an empirical model to diagnose TC intensity based on cloud organi‐
zation in the visible channel. Factors that affected strength of the storm were accounted by
structural features such as magnitude of the brightness, temperatures, and curvature of the
banding or distortion of the cloud pattern. A flowchart of rules in the Dvorak method was
created to consistently generate subjective estimates of TC intensity from the structural cues
in satellite imagery. Dvorak refined his method with time to incorporate additional rules and
constrictions as well as use of infrared channels, aiming to improve the accuracy and reduce
subjectivity of the technique.

The Dvorak technique continues as a critical part of operational analysis today. It is still the
most common method to diagnose TC intensity, with further attempts at intensity analysis
heavily borrowing for this work's legacy. Some efforts continue to hone the technique's
accuracy, such as updating the wind‐pressure relationship used to define the intensity [24].
The application and customization of Dvorak analysis worldwide described in [23] help
demonstrate its versatility and robustness as a tool for TC forecasting. Efforts to make the
process more objective led to the creation of a fully automated TC intensity analysis [25], which
itself continues to have updates as the Advanced Dvorak Technique (ADT) [26].

Beyond the Dvorak technique, there are several other methods to diagnose TC structure and
intensity from infrared and visible channels. The correlations between infrared TBs and
operational storm size metrics (i.e., radius of maximum winds (RMW), and radii of the 34‐,
50‐, and 64‐kt winds) were presented in 2007 [27]. A similar use of infrared imagery to resolve
TC sizes, as defined by the radius of the 5‐kt 850 hPa wind, that relate to the TC lifecycle were
studied [28]. A statistical analysis of the distribution of temperatures with respect to TC
axisymmetry (the deviation angle variance technique) continues to show great promise in not
only diagnosing structure, but also helping with TC centering, genesis, and intensity [29].
Another potential relationship between TC intensity and structure changes can be seen by
differencing the GEO water vapor and infrared channels [30]. This methodology leverages
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information in each channel (due to the weighting function representing different altitudes
and chemical profiles) to emphasize specific structural features such as overshooting convec‐
tive tops. Finally, there are efforts to relate the rotational speed of IR and visible cloud tops
about the TC center to the intensity of major typhoons in the northwestern Pacific basin [31].

Besides the traditional infrared and visible channels, other remote sensing frequencies have
proven useful for observing TCs. The use of satellite active microwave radars (scatterometers)
to estimate storm size and intensity via surface wind analysis has been very beneficial to
operational efforts at the National Hurricane Center (NHC) [32]. Scatterometers transmit
pulses that bounce off the ocean surface; the backscatter's variability due to wind roughening
enables retrievals of the surface wind vector estimates. QuikSCAT scatterometer data were
used to derive climatology of storm sizes at the 23 kt radius as well as an outer radius using a
wind structure model [33]. Similar studies were done to create a QuikSCAT climatology of
storm sizes for the 34‐kt radius and outer‐core strength (OCS) intensity [34–36]. TC structure
and intensity are also investigated using other satellite sensor datasets such as the TRMM
precipitation radar (PR) and TMI in tandem with lightning flash density to compare differences
in frequency thresholds between regions of the TC [37]. The synthetic aperture radar (SAR)
was used to visualize extremely small mesoscale details of TC and subjectively catalogue
characteristics of the eye, including spatial area, shape, and wavenumber [38]. SAR TC
retrievals are currently poorly tied to physical processes and the radar retrievals from space
occur infrequently, while passive microwave can directly characterize TC structure by
penetrating non‐raining cloud tops, unlike in the visible and infrared channels [39].

While the ultimate purpose and mechanism of the TC eye formation remain uncertain, there
are many characteristic modes associated with TC eye. In general, due to dynamical consid‐
erations of the eyewall, the TC eye tends to get smaller. Eventually, a new outer eyewall may
form and produce an outer eye that encompasses the previous smaller eye. In rare cases of an
extremely intense and compact TC, a “pinhole” eye will form [27]. In some other cases, a large
and stable eye with multiple embedded meso‐vorticies can form [40, 41]. The TC eye shape is
not always circular, as polygonal eyewalls seem to be due to vorticity instability [42, 43]. Recent
observations show eye‐like features developing in the lower troposphere before being
observed in the upper troposphere [44].

The strongest vertical motion in TCs was found just inward of the RMW [45, 46]. In addition,
the eyewall tended to slope outward with height due to the TC warm core. The TC intensity
and eyewall slope relationship shows a great deal of case‐to‐case variability [47]. Due to this
slope, the updraft itself was also tilted so that most of the falling hydrometeors in the eyewall
(and thus the radar reflectivity maximum) lie outside the RMW [46]. The high‐resolution
airborne Doppler radar was recently used to update and extend these results [48, 49]. Regions
of the TC core, defined by normalization with respect to the RMW, are shown to exhibit modes
of radar reflectivity, convergence/divergence, and vorticity that correspond to the previously
cited work; particularly, there is an outer peak in upper‐level divergence and low‐level
convergence that occurs in the vicinity of secondary eyewall formation.

The nature of TC convection occurring in spiral bands was not known until their first obser‐
vations on radar [50]. However, the TC spiral band was quantitatively and qualitatively
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characterized shortly thereafter [51, 52]. A logarithmic spiral based on radar observations was
introduced to start at an inner radial circle (i.e., the inner‐core or eyewall) rather than the center
itself [51]. An analysis of the logarithmic spiral length has been quite useful in diagnosing
intensity [22]. The idea that low‐latitude TCs have lower spiral crossing angles than higher
latitude storms possibly due to storm motion was also introduced [51]. The TC spiral bands
propagate outward [52], while some rain bands actually propagate inward when taking into
account storm motion [53]. In general, there may be three types of spiral bands based on
movement: stationary (non‐propagating), apparent propagation (stationary with respect to the
TC center), and intrinsic propagation [50].

Figure 5. Two schematics of TC structures from [109]. (a) Horizontal cross‐section of structural features as presented by
radar. (b) Vertical cross‐section of the same structural features and their relation to the secondary circulation described
in Eliassen [110] and Shapiro and Willoughby [111] (adapted from Willoughby (1995)).

These structural characteristics are summarized in Figure 5 for a well‐organized double
eyewall TC. The inner eyewall, outer eyewall, principal convective band, and secondary
convective band are clearly presented with radar reflectivity (Figure 5a). The stratiform
precipitation occurs largely in the moat areas. These unique TC features are clearly captured
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by the PMW sensor's measurements at high‐frequency channels as shown in Figure 4. The
TC's tilted updraft at the eyewall, forced descent air at the eye, lower level inflow and upper
level outflow, brightband associated with stratiform precipitation as well as mesoscale updraft
(downdraft) above (below) the brightband are demonstrated in Figure 5b. Detailed TC vertical
temperature profiles can also be observed by PMW sensors. Figure 6 shows cross section of
the AMSU‐retrieved temperature anomalies through hurricane Bonnie at 1200 UTC August
25, 1998. The TC warm core near 250 hPa and the vertical temperature profiles match well with
observations. Thus, this unique warm core feature can be applied for TC intensity estimates
discussed in the next section.

Figure 6. Cross section of temperature anomalies through Hurricane Bonnie at 1200 UTC 25 Aug 1998 retrieved from
AMSU data (adapted from Kidder et al. (2010). ©American Meteorological Society. Used with permission).

4. TC intensity estimation

Generally, there are two types of available polar‐orbiting microwave sensors: imagers and
sounders. The microwave imagers typically consist of sensors with frequencies that measure
surface properties as well as organization of various water phases in the atmosphere. The
microwave sounders aim to provide profiles of atmospheric thermal structure and moisture
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estimates. Depending on the mission goals of a particular sensor, there can be overlap between
available channels of a microwave imager and sounder.

Figure 7. A multi‐panel comparison of the AMSU temperature structure at the upper levels of Atlantic Hurricane Rita
(2005). “X” is the TC center position. The strength of the temperature anomalies represents deepening of the warm core
structure and corresponds well with increasing intensity (adapted from UW Madison/CIMSS: http://trop‐
ic.ssec.wisc.edu/real‐time/amsu/).

Attempts to diagnose TC structure and intensity from microwave sounders occurred shortly
after the first sounder was launched [54]. Although the coarse resolution of sounders has
traditionally created an analysis barrier due to smoothing over the storm features, the more
advanced sensors such as AMSU are starting to resolve the magnitude of thermal anomalies
as well as core/eye size more faithfully [19, 55]. Figure 7 presents the AMSU‐retrieved
temperature anomaly distributions at 4000 ft at different stages of Hurricane Rita during 18–
21 September, 2015. It clearly shows increased amplitude of the unique TC upper level warm
core feature corresponding well with intensification of the hurricane intensity. Multiple linear
regressions of the AMSU channels also can estimate features such as maximum sustained wind
(MSW), minimum sea level pressure (MSLP), and wind radii at the 34‐, 50‐, and 64‐kt thresh‐
olds [56]. Use of AMSU data as part of an ensemble shows great promise for more accurate TC
structure retrieval; a combination of the ADT and two different AMSU intensity estimates
makes up the satellite consensus (SATCON) method of TC intensity estimation [57], which has
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the highest skill of all satellite‐based intensity estimation methods [58]. A comparison of the
TC sustained 1 minute wind estimates from different techniques is displayed for an example
storm in Figure 8. It demonstrates that the PMW sensor‐based measurements can be used to
accurately estimate the TC intensity. Although every method with individual PMW sensor in
general agrees with each other, differences are still obvious. Results indicate that SATCON
performs well against the TC's best track dataset. These techniques have been continuously
evolved to create a better sounder TC intensity algorithm with new sensors such as SSMIS and
ATMS, which have improved spatial resolution to depict the TC's warm core [18].

Figure 8. Satellite consensus (SATCON) intensity analysis of Typhoon Champi (2015) in the West Pacific. The solid
black line shows the best track intensity from JTWC, the black dots show the subjective Dvorak satellite estimates, and
all the other plots show objective satellite‐based estimates (adapted from Derrick Herndon and CIMSS, http://trop‐
ic.ssec.wisc.edu/real‐time/satcon/).

To contrast, microwave imagers have a more recent appearance in TC analysis, with perhaps
more potential for added value. The near real‐time access to digital microwave imagery was
the largest impediment near the turn of the millennium [39], in which authors describe efforts
at NRL‐MRY to provide near real‐time access to high‐resolution TC images, and to support a
temporal return frequency favorable for operational TC forecasting. A more detailed discus‐
sion about the utility of microwave imagers indicated that despite the ability to create the
PMW‐derived physical quantities (e.g., sea surface wind magnitude, precipitable water, and
cloud liquid water) using multiple frequencies which utilize different spatial resolutions, they
smooth over important structural features of the TC [59]. These features include a TB depression
at the high frequency channel (85, 89 or 91 GHz) due to ice scattering and lower frequencies
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such as 37 GHz principally showing liquid hydrometeor emissions near and below the freezing
level. Both of these previously mentioned channels are measured at horizontal (H) and vertical
(V) polarizations. Near the interface of the outer TC and the environment, interpretations at
either polarization become muddled due to multiple competing influences (e.g., water vapor,
cloud water, and sea surface). The polarization correction temperature (PCT) can improve the
representation of atmospheric features, allowing them to stand out from surface background
[60].

Despite its relatively new arrival, some progresses are apparent in using microwave imagers
to examine tropical cyclones. For example, the NHC extensively uses microwave imagery to
better locate a TC center and subjectively diagnose changes in structure [32]. The Morphed
Integrated Microwave Imagery at CIMSS (MIMIC), a technique to create “morphed” anima‐
tions of passive microwave imagery using an advection function between satellite passes, was
introduced to allow a visually appealing depiction of TC structure changes [61]. Other studies
also revealed relationship between microwave imager data to TC intensity [62, 63]. The
microwave data have been used to improve TC intensity estimates through early detection of
a forming eyewall [64], while a color composite of the H‐pol, V‐pol, and PCT data at 37 GHz
developed at NRL‐MRY has shown particular promise in diagnosing TC inner core formation
[39]. A symmetrical and closed TB threshold (“cyan ring”) was applied to predict the TC onset
rapid intensification [44].

Some efforts focused on cataloging TCs through an extended climatology of microwave
imagers. The microwave data interpolated onto an 8‐km grid in the hurricane satellite
(HURSAT) archive was created in 2008 [65]. The HURSAT‐microwave consists of data from
the SSM/I platforms between 1987 and 2009, using global best track data from the International
Best Track Archive for Climate Stewardship (IBTrACS) to search for TCs [24]. Based on this
dataset, the TCs composited by their intensification rate and environmental wind shear were
analyzed to compare microwave signatures during different intensity regimes [66]. Recently,
a new study on eyewall size estimates using the HURSAT‐microwave data compared to the
aircraft reconnaissance measurements demonstrates the similarity of in‐situ and satellite‐
derived structural profiles [67]. A more advanced TC PMW TB database at 1 km spatial
resolution has been developed at NRL‐MRY from all available PMW sensors in 1987–2012 with
more consistent inter‐calibrated TBs at 89 GHz, better eye fixing, and high quality interpolation
scheme [68, 69].

5. TC precipitation

One of the typical phenomena of TC activities is heavy rainfall, which is also one of the most
significant impacts of TCs. The tremendous precipitation from TCs often leads to loss of lives
and properties. Flooding from landfall TCs over United States is the leading cause of death
related to severe storms [70]. However, TC precipitation can also bring in major economic
benefits to areas surrounding its path. Based on the long‐term TRMM rainfall measurements,
over 84% of continental convective rainfall is contributed from rain intensity > 5 mm h‐1 [71].
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Analysis of the numerical weather prediction (NWP) model rainfall forecasts indicates TC
precipitation could contribute 15–17% of the total annual rainfall over broad latitude zones
[72]. TC rainfall can contribute up to 15% of total precipitation over a hurricane season in
Carolinas of United States [73]. Therefore, even precipitation from one TC activities could ease
the stress of drought over some areas. A good review of TC rainfall's structure, intensity, and
forecasts was recently reported [21].

Rain retrievals from advanced algorithms based on PMW measurements over ocean have been
proven accurate and reliable [74–77]. The satellite‐derived instantaneous rain patterns over
TCs clearly show the heavy rainfall is normally located in TC eyewall and spiral convective
areas. In general, the intensity and pattern of TC precipitation are strongly associated with the
TC intensity and radial distance to eyewall [78]. The maximum rainfall appears in the TC
eyewall around less than 50 km radii and the rainfall intensity rapidly reduces with increase
of its radii. Rain intensity is about 13 mm h‐1 for major TCs (category 3–5), 7 mm h‐1 for minor
TCs (category 1–2), and 3 mm h‐1 for tropical storms. By the radii of 300–350 km, rain intensity
for all kinds of TCs is almost same.

Figure 9. Rainfall asymmetry calculated in 10‐km rings around the storm center, as a function of storm intensity: (a)
2121 TC observations (total distribution), (b) TS, (c) CAT12, (d) CAT35. The storm motion vector is aligned with the
positive y axis. The color scale indicates the amplitude of the normalized asymmetry. Red corresponds to the maxi‐
mum positive anomaly and blue to the minimum rainfall within the storm (adapted from Lonfat et al. (2004). ©Ameri‐
can Meteorological Society. Used with permission).
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The asymmetry of TC precipitation is a prominent feature. It shows different characteristics
depending on what matric is applied. Figure 9 presents the TC rainfall asymmetry patterns
relative to its motion direction as a function of storm intensity based on 3 years’ TRMM TMI
rain retrievals [78]. For all storms and tropical storms, their maximum rain intensity is in the
front quadrants of TC movement. The location of maximum rain intensity shifts from the front‐
left for CAT1‐2 to front‐right quadrants for CAT3‐5. Thus, the asymmetry of TC rainfall is
linked with the TC intensity, especially for strong TCs. In addition, the asymmetry has a
property of strong dependence on TC geographic locations. Maximum rainfall appears in front
quadrants over WP while in front‐right quadrants over AT. Maximum rainfall shifts to the
front‐left quadrants over SH. Over EP and IO, it is located in the front quadrants with a
cyclonical pattern.

A recent study based on TRMM rain datasets for landfall TCs over different parts of China
presents various rainfall patterns relative to TC's motion at different times of landfall [79].
Maximum rainfall is located in the left quadrants for TCs landed in Guangdong province and
Taiwan, while in the front‐left quadrants for TCs landed in Hainan and Fujian provinces.
Maximum rainfall is generally located in the back‐right quadrants for TCs landed in Zhejiang
province. However, maximum rainfall is generally positioned in the front quadrants of TCs
relative to its vertical wind shear vector (Figure 10), although there is still a slight difference
in rainfall distribution between different areas. This feature is an important finding because it
has a potential application for improving TC rainfall forecasts.

What are the possible causes for the asymmetric distribution of TC precipitation? Several
known factors are associated with this asymmetry feature, such as the advection of planetary
vorticity, vertical wind shear, and friction‐induced boundary layer convergence [80, 81]. The
maximum rainfall in the front‐quadrants of TC motion indicates the role of friction‐induced
boundary layer convergence. Higher TC moving speed leads to strong rain intensity in its front
quadrants [78], while its dependence on geographic locations shows importance of the TC's
ambient wind influence. The improved consistence of rainfall asymmetry relative to its vertical
wind shear for the landfall TCs over China further indicates the role of interaction between TC
and its environmental forcing. However, this feature needs more verification studies over other
TC basins and its connections to amplitudes of the vertical wind shear.

A better prediction of the TC rainfall distribution is the ultimate goal of efforts in mitigating
TC's rainfall impacts on society, life, and property. Several methods have been developed for
operational TC rainfall forecasts. A popular one is the Tropical Rainfall Potential (TRaP) which
is based on the satellite rainfall estimates, persistence of TC intensity, and satellite‐derived
wind vector [19, 82].

1
avTRaP R D V -= × × (1)

where Rav is the mean rainrate along a line in the direction of TC motion, D is the distance of
that line across the TC rain area, and V is the TC's actual speed. Accurate satellite rain retrievals
and satellite wind vectors as well as its easy implementation have made this method popular
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Figure 10. The wavenumber 1 rainfall asymmetry (mm) relative to the storm vertical wind shear. The shear vector is
aligned with the positive y axis (upward). The x and y axes are distance (°) from the TC center (origins). Stage (I) is 24
hr prior to, stage (II) is at the time of, and stage (III) is 24 hr after landfall. The color scale indicates the amplitude of the
asymmetry relative to the storm motion (adapted from Yu et al. (2014). ©American Meteorological Society. Used with
permission).
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in operations. A variation of this method called the areal TRaP has been introduced to graphic
view of TC precipitation horizontal distributions [83, 84], with three correct assumptions of
TC track forecast, satellite rain estimates, and persistent spatial pattern of rainrates relative to
the TC center. TRaP is normally valid for short forecasts of less than 24 hr. However, there are
limitations associated with TRaP because of no considerations on changes of TC intensity and
the TC's vertical wind shear conditions.

Another method is the rainfall climatology and persistence (R‐CLIPER) model which is a
parametric model utilized with the TC rainfall climatology from satellite measurements [85].
This method assumes a circularly symmetric distribution of rainfall and its rainfall is translated
in time. Although it accounts for TC intensity and moving speed, it does not include the TC's
unique asymmetry rainfall patterns. An improved method called the parametric hurricane
rainfall model (PHRaM) was introduced to incorporate with the TC rainfall asymmetry feature
by including the azimuthal Fourier decomposition for shear and a term indicating the
topographical uplift [86]. Results show that PHRaM is improved significantly compared with
the standard R‐CLIPER. A new parametric model was recently developed for including more
factors such as TC motion speed and intensity, vertical wind shear, and typical features of the
TC boundary layer [87].

All the above‐mentioned methods have one common assumption of the correct satellite rainfall
retrievals. Although satellite‐derived precipitation from PMW sensors is very accurate over
ocean, there are still relatively large errors over land [75, 88]. Some discrepancies exist among
satellite rain datasets, especially with different satellite sensors and retrieval algorithms. In
order to minimize errors from different rain retrieval algorithms for different sensors, the
physical‐based inversion rain algorithm (GPROF) used in TRMM and GPM is also applied for
other PMW sensors [77]. Thus, precipitation from different PMW sensors will be more
consistent. The new NASA integrated multi‐satellite retrievals for GPM (IMERG) is based on
these consistent PMW rain retrievals and calibrated IR‐based rainfall so that it will produce a
higher quality precipitation data [20]. The high quality satellite rainfall will be used to generate
a better TC rain climatology. In addition, precipitation has a strong diurnal cycle property [89–
91] and there is also a clear diurnal feature in TC lifecycle [92]. These diurnal properties could
also be utilized in improving TC rain forecasts in the near future. However, the best TC rain
forecast should come from future advanced cloud‐revolving models which could predict not
only TC intensity and track, but also rain distributions at different spatial scales.

6. Impacts of satellite remote sensing on TC forecasts

The NWP models are used at major weather operation centers to provide regular 7‐day
weather forecasts. The prediction skills have been consistently improving about one day per
decade in last several decades with advances in NWP model developments, application of
more satellite observations, and high‐performance computing power [93]. Especially after
global satellite observations are applied in the NWP data assimilations, the NWP skills are
proven very accurate for 3‐day forecast, highly accurate for 5‐day forecasts and very useful for
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7‐day forecasts for both northern and southern hemispheres. Modern NWP models even show
skill for extended forecast beyond 10 days and up to months. The advanced climate models
could provide seasonal and longer time predictions with various confidence levels [94].

Accurate predictions of TC genesis, intensity, and track are crucial for preparation and
mitigation of TC's impacts. The forecast skills of global NWP models were always superior in
the northern hemisphere than the southern hemisphere until 1999 when global satellite
measurements were successfully assimilated so that difference of the prediction skills between
northern and southern hemispheres diminished [93, 95]. The role of satellite observations in
NWP forecast skills is normally assessed by the observing system experiments (OSEs) in which
denying or adding a set of satellite data is applied from or to a baseline observing system in
order to show its impacts on the forecast skills [96–98]. The famous example of the impacts of
satellite observations on the NWP forecast skills is the accurate prediction of Hurricane Sandy's
left (westward) turn to make landfall on the New Jersey coast for 7–8 days in advance by the
European Center for Medium‐Range Weather Forecasts (ECMWF) [99]. The OSE analyses
show that the storm's landfall would be reasonable without observations from geostationary
satellites; however, the prediction would not be very useful for 4–5 days before its landfall
without measurements from polar‐orbital satellites assimilated into the system. Figure 11
presents a comparison of the predicted Hurricane Sandy's positions before its landfall with
and without the polar‐orbital satellites. It clearly proves that the storm's intensity and position
were accurate with the LEO satellite data, while its intensity would be weak and its position
offshore without satellite data assimilations.

Figure 11. This image uses the model output from the ECMWF experiments, showing where Sandy was predicted to
be located 5‐days out with the normal satellite data inputs into the model (left) and without any polar‐orbiting satellite
data (right). Both position and intensity forecasts were affected—Sandy stays out to sea without the polar‐orbiting sat‐
ellite data, and the closer isobar lines encircling the storm also imply a more organized and stronger system (adapted
from NOAA at http://www.noaanews.noaa.gov/stories2012/20121211_poesandsandy.html).
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More accurate forecasts of TC's intensity and track will have to come from the cloud‐resolving
models such as the NOAA hurricane weather research and forecasting (HWRF) system and
the NRL‐MRY Coupled Ocean/Atmosphere Mesoscale Prediction System for Tropical Cyclo‐
nes (COAMPS‐TC) because of the TC's strong intensity and small spatial size. Thus, a high
spatial resolution is required in making accurate TC simulations and predictions. The error
trends of the TC's track forecasts have been consistently and significantly reduced in last few
decades, while improvements on error trends of the TC's intensity forecasts are not so great
[100]. Figure 12 is an example of the error trends of the National Hurricane Center (NHC) TC
official track and intensity forecasts over the Atlantic basin. It demonstrates that the TC track
forecast errors are substantially decreased (>50%) from the 1990s to 2014, especially for 4–5
day forecasts. The track error is only around 35, 60, 80, 140, and 190 nm for 24, 48, 72, 96, and
120 hr forecasts, respectively. The track forecast skill increased from about 10% in 1990 to 70%
in 2014. However, a decrease of the TC intensity forecast error is very small at 24 hr, small at
48 and 72 hr, while substantial at 96 and 120 hr. The associated TC intensity forecast skill also
increases accordingly. Therefore, the TC intensity forecast skill has improved slightly; however,
these improvements are still statistically significant [101, 102].

Although improvement on the TC's intensity forecast is relatively small compared with the
TC track forecast, accuracy of the TC intensity forecast is obviously improved since 2001 when
more satellite observations have been systematically properly applied in NWP simulations.

Figure 12. Error trends of the NHC official TC forecast track and intensity at 24, 48, 72, 96, and 120 h for Atlantic basin.
Top‐left pane is for TC track forecast error trend, while bottom‐left panel is for the track forecast skill trend. The right
panel is same as the left panels except for TC intensity forecast (adapted from Cangialosi and Franklin (2015)).
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One of the important developments is to directly assimilate satellite observations into the
cloud‐resolving models. For example, a recent study indicates that introduction of the ATMS
data into the HWRF system has significant impacts on forecasts of hurricane intensity and
track [103]. Four landfall Atlantic hurricanes (Beryl, Debby, Isaac, and Sandy) in 2012 were
investigated using two sets of comparisons of four experiments: CTRL1 is for assimilations of
the conventional data, GPS RO data and ASCAT surface winds; CRTL1 + ATMS is for CRTL1
plus additional ATMS data; CRTL2 is for experiment setting of CRTL1 plus additional AMSU‐
A, AIRS and HIRS data; CRTL2+ATMS is for CRTL2 plus additional ATMS data. Results show
a reduced bias of TC track for CRTL2 than CRTL1 so that impacts of the polar‐orbital satellite
data on TC track are further validated. The assimilation of additional ATMS data further
reduced the bias of TC tracks and intensity as well as increased its lead time of forecasting.
Figure 13 presents the combined comparison results on track errors and standard deviations
of the four TC forecasts between CRTL2 and CRTL2 + ATMS. The track errors are similar

Figure 13. Mean forecast errors and standard deviations as functions of forecast lead time for TC track (a and b), maxi‐
mum wind Vmax (c and d), and minimum center pressure Pc (e and f) of CTRL2 (solid) and CTRL2 + ATMS (dashed) of
the four landfall storms (adapted from Zou et al. (2013). Reproduced by permission of American Geophysical Union).
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because of the abundant polar‐satellite measurements, while the errors of maximum wind
speed (Vmax) and minimum center pressure (Pc) are significantly reduced. Although the
standard deviation of track forecast is slightly large mainly due to the deteriorated Debby track
forecasts, the overall Vmax and Pc errors are obviously reduced.

The COAMPS‐TC system developed at NRL‐MRY has been transitioned to operations for real‐
time TC forecasts for several hurricane seasons at a spatial resolution of 5 km and
systematically evaluated for large samples of TC forecasts over Atlantic and West Pacific
basins [104]. Results demonstrate the accurate predictions of TC track and intensity, as well as
the sea surface temperature cooling response to the storm, indicating the capability of the
COAMPS‐TC system to realistically capture characteristics of the ocean surface waves and
their interactions with boundary layers above and below the ocean surface. There are more
satellite measurements than what are actually assimilated into the models. Proper utilization
of satellite data with positive impacts on forecast skills still requires more investigations and
validations.

7. Multi‐sensor‐based TC monitoring and tracking

Observation from the LEO satellite PMW sensors is the best way for detection and monitoring
of the global TC activities. Figure 14 is an example of total orbits of GPM GMI observations at
89 GHz horizontal polarization on March 31, 2014. It is obvious that there are good coverages
at high latitudes at daily scale, but there are large gaps in tropical and mid‐latitudes. Therefore,
multi‐PMW sensors are required to have a reasonable coverage to monitor and track the global
TC activities. Six PMW sensors could generally provide at least one measurement over a
location every 3 hr. However, the high frequency channel of the PMW sensors onboard

Figure 14. Example of one day satellite orbital measurements of GPM GMI 89 GHz at horizontal polarization on March
31, 2014.
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different satellites is different. For example, TMI and SSM/I are at 85 GHz while SSMIS is at
91 GHz; AMSR‐E, AMSR2, and GMI are at 89 GHz. These frequency differences could lead to
TB discrepancies up to 13K, which could mislead none‐expert analysts in monitoring the TC's
intensity, structure, and development. In order to have consistent TBs from different PMW
sensors for improved monitoring and tracking of global TC activities, a physically based
calibration scheme to calibrate TBs from 85 or 91 GHz TB into 89 GHz has been developed by
utilizing outputs of the cloud‐resolving model simulations for convective cloud systems and
the associated radiative transfer model simulated TBs [105]. Thus, the resultant unified TBs at
89 GHz will be consistent among all PMW sensors.

Figure 15 presents TB differences at horizontal polarization for TMI 85 and SSMIS 91 GHz
against AMSR‐E 89 GHz under four classified clouds: large rain, light rain, cloudy, and clear
sky. The associated fitting curves are components of the unified calibration scheme. It is evident
that the TB differences between TMI 85 and AMSR‐E 89 GHz‐H at heavy rain situations could
be as large as 13K. The difference is decreased to 1.5K after applying this calibration scheme.
By same token, the TB differences between SSMIS 91 GHz and AMSR‐E 89 GHz are also
decreased from 3K to 0.5K. The impacts of this calibration scheme are significant in improving
monitoring and tracking of the global TC intensity, structure, and development because of the
unified TBs from different PMW sensors. Figure 16 shows an example of comparison of the
observed Hurricane Igor TBs from TMI 85 GHz‐H and AMSR‐E 89 GHz‐H before and after the
calibration. Without the calibration (top left panel), the TB patterns from TMI 85 GHz‐H
indicate a false TC intensification in four minutes because of the enhanced eyewall in red color
from AMSR‐E 89 GHz‐H (bottom left panel). This misleading is caused by the TB differences
due to their frequency shift. With the calibration (bottom right panel), the TB distribution
patterns are very close to those observed by AMSR‐E 89 GHz. The top right panel is TB

corrections due to the frequency shift. In addition, this unified calibration scheme has been
applied to create a self‐consistent TB database for TCs observed by all PMW sensors, including
a TC center fixing algorithm and high quality interpolation scheme. The new database can be
utilized for climatology studies of TC structure, intensity, and life cycles [68, 69]

Figure 15. (a) Comparison of TB differences between the simulated TMI 85 and AMSR‐E 89 GHz H pol for Hurricane
Bonnie and squall line. The black, yellow, blue, and green color points are for the classified cloud conditions of rain,
light rain, non‐rain, and cloudy, respectively. The heavy dash lines are their related polynomial fitting lines. (b) Same as
(a) except for SSMIS 91 and AMSR‐E 89 GHz (from Yang et al. (2014). Reproduced by permission of Remote Sensing).
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Figure 16. Impact of the newly developed physically based calibration scheme on hurricane Igor: (upper‐left panel)
original TMI 85 GHz‐H pol; (bottom‐left panel) original AMSR‐E at 89 GHz‐H pol; (upper‐right panel) TB correction
distribution; and (bottom‐right panel) calibrated TMI 89 GHz‐H pol (from Yang et al. (2014). Reproduced by permis‐
sion of Remote Sensing).

The GEO IR/VIS sensors are also important in monitoring the global TC activities because the
LEO PMW sensors are limited. The IR/VIS sensors can fill the gaps missed by PMW sensors.
The precise TC center position is the most important index not only in monitoring and tracking
of TC lifecycles, but also in improving TC forecasts. The Automated Rotational Center
Hurricane Eye Retrieval (ARCHER) algorithm has been developed to automate‐objectively
determine the TC center from 85–92 GHz channels of PMW imagers [106]. This algorithm has
been applied at NRL‐MRY (http://www.nrlmry.navy.mil/TC.html) and Cooperative Institute
for Meteorological Satellite Studies (CIMSS) at University of Wisconsin‐Madison (http://
tropic.ssec.wisc.edu ) for operational TC monitoring and tracking. Its updated version
(ARCHER‐2) is now available for including LEO 37 GHz PMW imagers, GEO IR/VIS imagery,
and scatterometers [107]. It also produces a quantitative expected error estimate used for
evaluation of the suitability of the estimated TC centers. The multi‐satellite and multi‐sensor‐
based TC track called the ARCHER‐track is able to provide a fast access to additional TC center
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positions for operational forecasting processes. An example of the ARCHER‐track for Hurri‐
cane Michael (Figure 17) presents the TC centers during its lifecycle from different sensors
compared with the best official TC track. It demonstrates the TC centers from PMW sensors
have smaller errors than from IR/VIS sensors, although these TC centers from IR/VIS are still
accurate. In addition, the IR/VIS‐based TC positions provide important information to fill the
gaps missed by the limited PMW sensors.

Figure 17. Example of the ARCHER‐Track product for Hurricane Michael (2012). Components of the graphic are ex‐
plained in the top‐right legend. Inside the white circles, D = tropical depression, S = tropical storm, 1 = category‐1 hurri‐
cane, etc. (from Wimmers and Velden (2016). ©American Meteorological Society. Used with permission).

Figure 18 presents another example of a multi‐satellite PMW sensor‐based TC imagery at 89 
GHz‐H for a 2014 typhoon Rammasun to display its structure, intensity, development, and
tracking. ARCHER is used to find the TC centers while the multi‐sensor calibration scheme is
applied to generate the unified TBs at 89 GHz. In addition, the Backus‐Gilbert interpolation
scheme is utilized in providing high spatial resolution PMW TB images [108]. The 4° × 4° boxes
centered at the TC eye positions from all PMW sensors are extracted and overplayed into one
image to exhibit a summary overview of the TC structure, intensity, and tracking during its
lifecycle. It clearly shows evaluations of TC's key characteristics for purposes of a global TC
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monitoring and tracking. This new live TC tracking imagery will be added into the NRL‐MRY
TC web page in the near future.

Figure 18. Example of the multi‐satellite PMW sensor‐based TC track for 2014 West Pacific Typhoon Rammasun (09W).
The light white line is the JTWC near real‐time TC track.

8. Summary

TC is one of the most destructive weather phenomena. It is initiated in tropical oceans and has
a lifecycle mostly over water surface with unique horizontal characteristics of eyewall, spiral
convective zones, and a vertical warm core. Satellite remote sensing is the only way to provide
complete observation and monitoring of the global TC activities. The GEO IR/VIS is very useful
in monitoring TC activities but not in providing accurate estimates of the TC center locations
and intensity. The LEO PMW sensors are better suited for detecting TC genesis, development,
and structures because of their ability to measure the atmospheric profiles. TC structure and
intensity can be estimated from the PMW measurements.

Heavy precipitation is another important feature of TC activities. The abundance of TC rainfall
is crucial to the drought‐impacted regions because even one TC precipitation process could
lead to significant relief to the severe drought situation. However, the large amount of rainfall
from TC activities is also one of TC's impacts for loss of human lives and property damages.
The asymmetric property of TC rainfall makes it hard to predict TC rainfall distribution.
Although accurate rainfall retrievals from PMV sensors and the modern TC rainfall prediction
schemes have led to reasonable TC rain forecasts, a more consistent TC rainfall from various
PMW sensors and the TC diurnal characteristics are required to make further advances in TC
rainfall forecasts.
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Satellite remote sensing is very important in improving TC forecasts with the data assimilation
process. The near real‐time measurements of accurate atmospheric conditions from LEO and
GEO sensors are used to improve the NWP model's initial conditions and to minimize the
innovation error for better forecasts. The LEO PMW sounding sensors are especially critical in
improving weather forecasts because of their ability to provide accurate atmospheric temper‐
ature and humidity profiles. The TC track forecast errors have been gradually and substantially
reduced in past decades with the improved NWP models and the data assimilation schemes.
Although deduction of the TC intensity forecast errors is also statistically significant, the
amplitude of its improvements is much smaller than that for the TC track forecast errors. Future
efforts on optimum selections of the combined satellite sensor channels which have positive
impacts and better data assimilation methods are necessary in addition to improvements in
the next generation NWP models and developments as well as future advanced satellite
sensors onboard adequate satellites for better spatial and temporal global coverage.

Data fusion from multi‐satellite sensors is the only way to provide a global coverage of TC
activities. The LEO PMW sensors have advantages in high spatial resolution for TC structures,
accurate TC positions, intensity analysis, and precipitation distributions, but they lack in
temporal observations because each polar‐orbital satellite could provide measurements only
twice over a location per day. The LEO IR/VIS sensors have advantages in frequent observa‐
tions of TC activities, but they lack in accurate TC eye positions, intensity analysis, and
horizontal structures. ARCHER is an advanced algorithm in fixing the TC center positions
from both PMW and IR/VIS sensors in near real‐time with high confidence. The ARCHER track
provides excellent TC positions for monitoring of TC activities and initialization in model TC
data assimilation processes. The TC live track from PMW sensors will display evolutions of
TC structures and intensity for purposes of better monitoring and forecasts.
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