11 research outputs found

    Modeling human mitochondrial diseases related to MPV17 and APOPT1 in Drosophila melanogaster

    Get PDF
    Mitochondrial diseases are a clinically heterogeneous group of inherited disorders associated with defects in the oxidative phosphorylation system, with an estimated incidence in between 1:5,000 and 1:10,000 live births. Mitochondrial respiratory chain function depends on the coordinated expression of both mitochondrial and nuclear genomes. Thus, also mutations affecting nuclear-encoded mitochondrial proteins are responsible for mitochondrial disease onset. During the last decades, an increasing number of novel nuclear disease genes have been identified. Among those genes, human MPV17 and APOPT1 have already been linked to mitochondrial diseases but their role in mitochondrial physiology and disease remains still puzzling. Mutations in the human MPV17 nuclear gene, encoding a small hydrophobic mitochondrial inner membrane protein, are a prominent cause of a pediatric hepatocerebral form of mitochondrial DNA depletion syndrome. APOPT1 mutations are responsible for an infantile or childhood mitochondrial encephalopathy hallmarked by profound deficiencies in both COX activity and amount. In order to dissect out the role of these two genes, in this PhD project we focused our attention on the functional and molecular characterization of Drosophila melanogaster orthologs of MPV17 and APOPT1. We found that dMpv17 down-regulation in flies causes a profound mitochondrial DNA depletion in the fat bodies (a Drosophila organ analogous to human liver). Depletion is also detected, albeit moderate, in dMpv17 KD cells. Our results reveal that dMpv17 can form a channel when inserted in an artificial planar lipid bilayer. Moreover, we also show that the Drosophila protein could interact with dMic19, a component of the MICOS complex, as well as dMrp4, that could play a role in dMpv17 gating regulation. The analysis of mitochondrial morphology in dMpv17 down-regulated cells together with the interaction with Mic19 suggest a possible role for dMpv17 in the maintenance of the structural and functional stability of the inner mitochondrial membrane. Further, we confirmed that Drosophila is a reliable model for studying human mitochondrial disease also in the case of APOPT1. Indeed, our preliminary data show that dApopt1 down-regulation in flies causes motor impairment and COX deficiency, characteristic features of the human disease. Not only COX activity but also coxI transcript is decreased in dApopt1 down-regulated flies. Finally, we show that H2O2 treatment and, in turn, oxidative stress induce an increase in dApopt1 transcript. Finally, our data shed new light on the possible role of dMpv17 and dApopt1 in physiological and pathological conditions.Le malattie mitocondriali sono un gruppo ampio e eterogeneo di disordini ereditari causati da difetti del metabolismo energetico mitocondriale attribuibili a un malfunzionamento della catena respiratoria mitocondriale. La loro incidenza Ăš stata stimata tra 1:1500 e 1:10000 nati vivi. Queste sindromi sono il risultato di un gran numero di mutazioni rilevabili sia nel genoma nucleare sia in quello mitocondriale. Negli ultimi decenni, il numero di geni scoperti essere responsabili dell’insorgenza di malattie mitocondriali Ăš enormemente aumentato. Mutazioni nella proteina MPV17, localizzata nella membrana mitocondriale interna, sono state associate ad una particolare forma di sindrome da deplezione di DNA mitocondriale che colpisce primariamente il fegato e il sistema nervoso in etĂ  pediatrica. Invece, mutazioni in APOPT1 sono state identificate in pazienti caratterizzati da sintomi neurologici di vari entitĂ  associati a perdita della parola e della capacitĂ  motoria e accompagnati da un significativo deficit di citocromo C ossidasi a livello muscolare. Dal momento che la funzione di queste due proteine risulta essere ancora sconosciuta, abbiamo cercato di determinare il loro ruolo a livello mitocondriale e nello sviluppo di queste malattie studiando i geni ortologhi in Drosophila, dMpv17 e dApopt1. Abbiamo dimostrato che la down-regolazione dell’espressione di dMpv17 in vivo comporta una diminuzione significativa nel numero di copie di DNA mitocondriale nei fat bodies, un analogo funzionale del fegato dei mammiferi. Inoltre, alcuni risultati ottenuti molto recentemente suggeriscono che dMPV17 sarebbe in grado di formare un canale in un planar lipid bilayer. Infine, abbiamo identificato come suoi possibili interattori un componente del complesso MICOS e dMrp4, una proteina facente parte della famiglia dei trasportatori ABC che potrebbe regolare la sua attivitĂ  di canale. L’interazione con il complesso MICOS e i risultati della microscopia elettronica sulla morfologia dei mitocondri nelle cellule silenziate per dMpv17, che hanno evidenziato una diminuzione nel numero e nella lunghezza delle creste, fanno ipotizzare un possibile ruolo nel mantenimento della struttura e, quindi, della funzionalitĂ  della membrana mitocondriale interna. Studiando l’ortologo di APOPT1, dApopt1, abbiamo osservato che la sua down-regolazione in vivo comporta un marcato difetto locomotorio accompagnato da una significativa riduzione dell’attivitĂ  della citocromo C ossidasi, sintomi descritti anche nella patologia umana. Infine, poichĂ© la proteina umana sembra avere un ruolo nella risposta allo stress ossidativo, abbiamo dimostrato che l’espressione di dApopt1 Ăš indotta dal trattamento con H2O2. I risultati relativi alla caratterizzazione di dMpv17 e quelli preliminari riguardanti dApopt1 contribuiscono a fare luce sul ruolo di queste proteine sia a livello fisiologico che patologico, e confermano la validitĂ  di Drosophila come organismo modello per lo studio delle malattie genetiche uman

    Modeling human mitochondrial diseases related to MPV17 and APOPT1 in Drosophila melanogaster

    Get PDF
    Mitochondrial diseases are a clinically heterogeneous group of inherited disorders associated with defects in the oxidative phosphorylation system, with an estimated incidence in between 1:5,000 and 1:10,000 live births. Mitochondrial respiratory chain function depends on the coordinated expression of both mitochondrial and nuclear genomes. Thus, also mutations affecting nuclear-encoded mitochondrial proteins are responsible for mitochondrial disease onset. During the last decades, an increasing number of novel nuclear disease genes have been identified. Among those genes, human MPV17 and APOPT1 have already been linked to mitochondrial diseases but their role in mitochondrial physiology and disease remains still puzzling. Mutations in the human MPV17 nuclear gene, encoding a small hydrophobic mitochondrial inner membrane protein, are a prominent cause of a pediatric hepatocerebral form of mitochondrial DNA depletion syndrome. APOPT1 mutations are responsible for an infantile or childhood mitochondrial encephalopathy hallmarked by profound deficiencies in both COX activity and amount. In order to dissect out the role of these two genes, in this PhD project we focused our attention on the functional and molecular characterization of Drosophila melanogaster orthologs of MPV17 and APOPT1. We found that dMpv17 down-regulation in flies causes a profound mitochondrial DNA depletion in the fat bodies (a Drosophila organ analogous to human liver). Depletion is also detected, albeit moderate, in dMpv17 KD cells. Our results reveal that dMpv17 can form a channel when inserted in an artificial planar lipid bilayer. Moreover, we also show that the Drosophila protein could interact with dMic19, a component of the MICOS complex, as well as dMrp4, that could play a role in dMpv17 gating regulation. The analysis of mitochondrial morphology in dMpv17 down-regulated cells together with the interaction with Mic19 suggest a possible role for dMpv17 in the maintenance of the structural and functional stability of the inner mitochondrial membrane. Further, we confirmed that Drosophila is a reliable model for studying human mitochondrial disease also in the case of APOPT1. Indeed, our preliminary data show that dApopt1 down-regulation in flies causes motor impairment and COX deficiency, characteristic features of the human disease. Not only COX activity but also coxI transcript is decreased in dApopt1 down-regulated flies. Finally, we show that H2O2 treatment and, in turn, oxidative stress induce an increase in dApopt1 transcript. Finally, our data shed new light on the possible role of dMpv17 and dApopt1 in physiological and pathological conditions

    Drosophila Mpv17 forms an ion channel and regulates energy metabolism

    No full text
    Summary: Mutations in MPV17 are a major contributor to mitochondrial DNA (mtDNA) depletion syndromes, a group of inherited genetic conditions due to mtDNA instability. To investigate the role of MPV17 in mtDNA maintenance, we generated and characterized a Drosophila melanogaster Mpv17 (dMpv17) KO model showing that the absence of dMpv17 caused profound mtDNA depletion in the fat body but not in other tissues, increased glycolytic flux and reduced lifespan in starvation. Accordingly, the expression of key genes of glycogenolysis and glycolysis was upregulated in dMpv17 KO flies. In addition, we demonstrated that dMpv17 formed a channel in planar lipid bilayers at physiological ionic conditions, and its electrophysiological hallmarks were affected by pathological mutations. Importantly, the reconstituted channel translocated uridine but not orotate across the membrane. Our results indicate that dMpv17 forms a channel involved in translocation of key metabolites and highlight the importance of dMpv17 in energy homeostasis and mitochondrial function

    NADâș repletion with niacin counteracts cancer cachexia

    No full text
    Abstract Cachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NADâș) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NADâș and downregulation of Nrk2, an NADâș biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NADâș repletion therapy in cachectic mice reveals that NADâș precursor, vitamin B3 niacin, efficiently corrects tissue NADâș levels, improves mitochondrial metabolism and ameliorates cancer- and chemotherapy-induced cachexia. In a clinical setting, we show that muscle NRK2 is downregulated in cancer patients. The low expression of NRK2 correlates with metabolic abnormalities underscoring the significance of NADâș in the pathophysiology of human cancer cachexia. Overall, our results propose NADâș metabolism as a therapy target for cachectic cancer patients
    corecore