10 research outputs found

    Mice with Disrupted Type I Protein Kinase A Anchoring in T Cells Resist Retrovirus-Induced Immunodeficiency

    Full text link
    Type I protein kinase A (PKA) is targeted to the TCR-proximal signaling machinery by the A-kinase anchoring protein ezrin and negatively regulates T cell immune function through activation of the C-terminal Src kinase. RI anchoring disruptor (RIAD) is a high-affinity competitor peptide that specifically displaces type I PKA from A-kinase anchoring proteins. In this study, we disrupted type I PKA anchoring in peripheral T cells by expressing a soluble ezrin fragment with RIAD inserted in place of the endogenous A-kinase binding domain under the lck distal promoter in mice. Peripheral T cells from mice expressing the RIAD fusion protein (RIAD-transgenic mice) displayed augmented basal and TCR-activated signaling, enhanced T cell responsiveness assessed as IL-2 secretion, and reduced sensitivity to PGE2- and cAMP-mediated inhibition of T cell function. Hyperactivation of the cAMP–type I PKA pathway is involved in the T cell dysfunction of HIV infection, as well as murine AIDS, a disease model induced by infection of C57BL/6 mice with LP-BM5, a mixture of attenuated murine leukemia viruses. LP-BM5–infected RIADtransgenic mice resist progression of murine AIDS and have improved viral control. This underscores the cAMP–type I PKA pathway in T cells as a putative target for therapeutic intervention in immunodeficiency diseases.Peer reviewe

    Caractérisation des mécanismes moléculaires impliquant la protéine IKAP/hELP1 et le complexe ELongator

    Full text link
    Characterization of IKAP/hELP1-dependent pathways.AbstractAn extensive characterization of the signal transduction pathways is required to better understand how cells respond to various stimuli. While the human genome is completely sequenced, it is still necessary to combine those informations with a full knowledge of the biological roles played by the proteins. Importantly, a deregulation of the signal transduction pathways underlie a variety of human diseases such as cancer or neurodegenerative disorders.IKAP/hELP1 is the largest subunit of Elongator and is required for the functional integrity of this complex. The histone acetyltransferase activity of Elongator helps the transcriptional machinery to move on the template of still poorly characterized genes to transcribe. In yeast, Elongator has also been involved in tRNA modifications as well as in exocytosis. In humans, Familial dysautonomia, an autosomal recessive disease characterized by defects in the development and maintenance of neurons of the autonomic and sensory systems, results from a loss-of-function of IKAP/hELP1. Recent work in our laboratory linked this disease to a cell migration defect of IKAP/hELP1 depleted cells. The aim of this work is to investigate the role of Elongator in signal transduction. In the first part, we wanted to know whether Elongator was required for the regulation of gene expression in response to DNA damage. We demonstrated that some p53-dependent genes were aberrantly expressed upon Elongator deficiency in colon cancer-derived cells. Moreover, we showed that these IKAP/hELP1 depleted cells were not more sensitive to apoptosis in response to persistent DNAdamage.In the second part of this work, to better characterize IKAP/hELP1, we tried to validate its potential interaction with the RanBP2 nucleoporin which is a component of the nuclear pore complex. Given its mainly cytoplasmic localization and its role in the nucleus, we studied the translocation of IKAP/hELP1 between both of these cellular compartments. We determined a potential nuclear export signal on the C-terminal part of IKAP/hELP1. This might allow us to further explore the link between the distinct roles and the localization of the Elongator complex. /Caractérisation des mécanismes moléculaires impliquant la protéine IKAP/hELP1 et le complexe Elongator.RésuméL’étude des voies de signalisation permet de mieux comprendre comment une cellule réagit face à divers stimuli. Alors que le génome humain est complètement séquencé, la caractérisation des différentes voies de signalisation cellulaire est à ce jour toujours incomplète et nécessite une meilleure connaissance de leurs principaux acteurs, les protéines. Ceci est d’autant plus important qu’un dérèglement de l’activation de ces voies de signalisation peut conduire à des pathologies aussi diverses que le cancer ou des maladies neurodégénératives.IKAP/hELP1 est la plus grande sous-unité du complexe Elongator et est essentielle pour l’assemblage fonctionnel de celui-ci. Le complexe Elongator grâce à son activité d’acétylation des histones qui permet l’accès à la chromatine, participe à l’élongation de la transcription de gènes, ceux-ci restant à ce jour peu caractérisés. Récemment chez la levure, Elongator a été décrit comme prenant part à d’autres évènements cellulaires aussi divers que la modification des ARNs de transfert qui permet une traduction fidèle des protéines, ou que l’exocytose. Chez l’homme, une neuropathologie génétique, la dysautonomie familiale, est la conséquence directe d’une perte de fonction de la protéine IKAP/hELP1. Notre laboratoire a récemment fait le lien entre cette maladie qui affecte le développement et la survie du système nerveux autonome et sensoriel, et un déficit des capacités migratoires de cellules exprimant trop faiblement la protéine IKAP/hELP1. Le but de ce travail est de poursuivre la caractérisation des rôles biologiques du complexe Elongator. Dans la première partie de ce travail, nous avons examiné le rôle d’Elongator dans la modulation de l’expression de gènes suite à un dommage à l’ADN. Nous avons pu mettre en évidence une altération du profil d’expression de plusieurs gènes connus pour être sous la dépendance de p53, une protéine activée en réponse à divers signaux de stress, dans des cellules dérivées de cancers du colon et déficientes pour Elongator. De plus, nous avons déterminé que ces cellules déplétées pour IKAP/hELP1 n’étaient pas plus sensibles à l’apoptose, en réponse ou non à des dommages persistants à l’ADN. Dans la deuxième partie, nous avons tenté de valider, sur base de résultats obtenus chez la levure, son interaction potentielle avec une protéine du pore nucléaire, RanBP2. Etant donné sa localisation majoritairement cytoplasmique et sa fonction dans le compartiment nucléaire, nous avons étudié le transport d’IKAP/hELP1 entre le noyau et le cytoplasme. Nous avons pu déterminer un site d’export nucléaire potentiel sur l’extrémité C-terminale d’IKAP/hELP1 qui nous permettra d’explorer le lien entre les différentes fonctions et la localisation du complexe Elongator

    Transcription impairment and cell migration defects in elongator-depleted cells: Implication for familial dysautonomia

    Full text link
    Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neuro-developmental disease with complex clinical characteristics. Elongator was previously linked not only with transcriptional elongation and histone acetylation but also with other cellular processes. Here, we used RNA interference (RNAi) and fibroblasts from FD patients to identify Elongator target genes and study the role of Elongator in transcription. Strikingly, whereas Elongator is recruited to both target and nontarget genes, only target genes display histone H3 hypoacetylation and progressively lower RNAPII density through the coding region in FD cells. Interestingly, several target genes encode proteins implicated in cell motility. Indeed, characterization of IKAP/hELP1 RNAi cells, FD fibroblasts, and neuronal cell-derived cells uncovered defects in this cellular function upon Elongator depletion. These results indicate that defects in Elongator function affect transcriptional elongation of several genes and that the ensuing cell motility deficiencies may underlie the neuropathology of FD patients

    Elongator contrôle la migration des neurones du coretx via l'acétylation de l'alpha tubuline

    Get PDF
    The generation of cortical projection neurons relies on the coordination of radial migration with branching. Here we report that the multi-subunit histone acetyltransferase Elongator complex, which contributes to transcript elongation, also regulates the maturation of projection neurons. Indeed, silencing of its scaffold (Elp1) or catalytic subunit (Elp3) cell-autonomously delays the migration and impairs the branching of projection neurons. Strikingly, neurons defective in Elongator show reduced levels of acetylated alpha tubulin. A direct reduction of alpha tubulin acetylation leads to comparable defects in cortical neurons and suggests that alpha tubulin is a target of Elp3. This is further supported by the demonstration that Elp3 promotes acetylation and counteracts HDAC6-mediated deacetylation of this substrate in vitro. Our results uncover alpha tubulin as a target of the Elongator complex and suggest that a tight regulation of its acetylation underlies the maturation of cortical projection neurons

    Deregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells.

    Full text link
    Elongator, a multi-subunit complex assembled by the IkappaB kinase-associated protein (IKAP)/hELP1 scaffold protein is involved in transcriptional elongation in the nucleus as well as in tRNA modifications in the cytoplasm. However, the biological processes regulated by Elongator in human cells only start to be elucidated. Here we demonstrate that IKAP/hELP1 depleted colon cancer-derived cells show enhanced basal expression of some but not all pro-apoptotic p53-dependent genes such as BAX. Moreover, Elongator deficiency causes increased basal and daunomycin-induced expression of the pro-survival serum- and glucocorticoid-induced protein kinase (SGK) gene through a p53-dependent pathway. Thus, our data collectively demonstrate that Elongator deficiency triggers the activation of p53-dependent genes harbouring opposite functions with respect to apoptosis
    corecore