5 research outputs found

    Heterosis and Composition of Sweet Sorghum

    Get PDF
    Sweet sorghum (Sorghum bicolor) has potential as a bioenergy feedstock due to its high yield potential and the production of simple sugars for fermentation. Sweet sorghum cultivars are typically tall, high biomass types with juicy stalks and high sugar concentration. These sorghums can be harvested, milled, and fermented to ethanol using technology similar to that used to process sugarcane. Sweet sorghum has advantages in that it can be planted by seed with traditional planters, is an annual plant that quickly produces a crop and fits well in crop rotations, and it is a very water-use efficient crop. Processing sweet sorghum is capital intensive, but it could fit into areas where sugarcane is already produced. Sweet sorghum could be timed to harvest and supply the sugar mill during the off season when sugarcane is not being processed, be fit into crop rotations, or used in water limiting environments. In these ways, sweet sorghum could be used to produce ethanol in the Southern U.S and other tropical and subtropical environments. Traditionally, sweet sorghum has been grown as a pureline cultivar. However, these cultivars produce low quantities of seed and are often too tall for efficient mechanical harvest. Sweet sorghum hybrids that use grain-type seed parents with high sugar concentrations are one way to overcome limitation to seed supply and to capture the benefits of heterosis. There are four objectives of this research. First to evaluate the importance of genotype, environment, and genotype-by-environment interaction effects on the sweet sorghum yield and composition. The second objective is to determine the presence and magnitude of heterosis effects for traits related to sugar production in sweet sorghum. Next: to study the ability of sweet sorghum hybrids and cultivars to produce a ratoon crop and determine the contribution of ratoon crops to total sugar yield. The final objective is to evaluate variation in composition of sweet sorghum juice and biomass. Sweet sorghum hybrids, grain-type sweet seed parents, and traditional cultivars that served as male parents were evaluated in multi-environment trials in Weslaco, College Station, and Halfway, Texas in 2007 and 2008. Both genotype and environment influenced performance, but environment had a greater effect than genotype on the composition of sweet sorghum juice and biomass yield. In comparing performance, elite hybrids produced fresh biomass and sugar yields similar to the traditional cultivars while overcoming the seed production limitations. High parent heterosis was expressed among the experimental hybrids for biomass yield, sugar yield and sugar concentration. Additional selection for combining ability would further enhance yields and heterosis in the same hybrid. Little variation was observed among hybrids for juice and biomass composition suggesting that breeding efforts should focus on yield before altering plant composition

    The combination of serum insulin, osteopontin, and hepatocyte growth factor predicts time to castration-resistant progression in androgen dependent metastatic prostate cancer- an exploratory study

    No full text
    BackgroundWe hypothesized that pretreatment serum levels of insulin and other serum markers would predict Progression-free survival (PFS), defined as time to castration-resistant progression or death, in metastatic androgen-dependent prostate cancer (mADPC).MethodsSerum samples from treatment-naïve men participating in a randomized phase 3 trial of ADT +/- chemotherapy were retrospectively analyzed using multiplex assays for insulin and multiple other soluble factors. Cox proportional hazards regression models were used to identify associations between individual factor levels and PFS.ResultsSixty six patients were evaluable (median age = 72 years; median prostate surface antigen [PSA] = 31.5 ng/mL; Caucasian = 86 %; Gleason score ≥8 = 77 %). In the univariable analysis, higher insulin (HR = 0.81 [0.67, 0.98] p = 0.03) and C-peptide (HR = 0.62 [0.39, 1.00]; p = 0.05) levels were associated with a longer PFS, while higher Hepatocyte Growth Factor (HGF; HR = 1.63 [1.06, 2.51] p = 0.03) and Osteopontin (OPN; HR = 1.56 [1.13, 2.15]; p = 0.01) levels were associated with a shorter PFS. In multivariable analysis, insulin below 2.1 (ln scale; HR = 2.55 [1.24, 5.23]; p = 0.011) and HGF above 8.9 (ln scale; HR = 2.67 [1.08, 3.70]; p = 0.027) levels were associated with longer PFS, while adjusted by OPN, C-peptide, trial therapy and metastatic volume. Four distinct risk groups were identified by counting the number of risk factors (RF) including low insulin, high HGF, high OPN levels, and low C-peptide levels (0, 1, 2, and 3). Median PFS was 9.8, 2.0, 1.6, and 0.7 years for each, respectively (p < 0.001).ConclusionPretreatment serum insulin, HGF, OPN, and C-peptide levels can predict PFS in men with mADPC treated with ADT. Risk groups based on these factors are superior predictors of PFS than each marker alone

    A Noninvasive Blood-based Combinatorial Proteomic Biomarker Assay to Detect Breast Cancer in Women Under the Age of 50 Years

    No full text
    BACKGROUND: Despite significant advances in breast imaging, the ability to detect breast cancer (BC) remains a challenge. To address the unmet needs of the current BC detection paradigm, 2 prospective clinical trials were conducted to develop a blood-based combinatorial proteomic biomarker assay (Videssa Breast) to accurately detect BC and reduce false positives (FPs) from suspicious imaging findings. PATIENTS AND METHODS: Provista-001 and Provista-002 (cohort one) enrolled Breast Imaging Reporting and Data System 3 or 4 women aged under 50 years. Serum was evaluated for 11 serum protein biomarkers and 33 tumor-associated autoantibodies. Individual biomarker expression, demographics, and clinical characteristics data from Provista-001 were combined to develop a logistic regression model to detect BC. The performance was tested using Provista-002 cohort one (validation set). RESULTS: The training model had a sensitivity and specificity of 92.3% and 85.3% (BC prevalence, 7.7%), respectively. In the validation set (BC prevalence, 2.9%), the sensitivity and specificity were 66.7% and 81.5%, respectively. The negative predictive value was high in both sets (99.3% and 98.8%, respectively). Videssa Breast performance in the combined training and validation set was 99.1% negative predictive value, 87.5% sensitivity, 83.8% specificity, and 25.2% positive predictive value (BC prevalence, 5.87%). Overall, imaging resulted in 341 participants receiving follow-up procedures to detect 30 cancers (90.6% FP rate). Videssa Breast would have recommended 111 participants for follow-up, a 67% reduction in FPs (P \u3c .00001). CONCLUSIONS: Videssa Breast can effectively detect BC when used in conjunction with imaging and can substantially reduce unnecessary medical procedures, as well as provide assurance to women that they likely do not have BC

    Buckets, bollards and bombs: towards subject histories of technologies and terrors

    No full text

    Age, sex, colour and disability discrimination in America

    No full text
    corecore