43 research outputs found

    Diamondoids are not forever: microbial biotransformation of diamondoid carboxylic acids

    Get PDF
    Oil sands process‐affected waters (OSPW) contain persistent, toxic naphthenic acids (NAs), including the abundant yet little‐studied diamondoid carboxylic acids. Therefore, we investigated the aerobic microbial biotransformation of two of the most abundant, chronically toxic and environmentally relevant diamondoid carboxylic acids: adamantane‐1‐carboxylic acid (A1CA) and 3‐ethyl adamantane carboxylic acid (3EA). We inoculated into minimal salts media with diamondoid carboxylic acids as sole carbon and energy source two samples: (i) a surface water sample (designated TPW) collected from a test pit from the Mildred Lake Settling Basin and (ii) a water sample (designated 2 m) collected at a water depth of 2 m from a tailings pond. By day 33, in TPW enrichments, 71% of A1CA and 50% of 3EA was transformed, with 50% reduction in EC20 toxicity. Similar results were found for 2 m enrichments. Biotransformation of A1CA and 3EA resulted in the production of two metabolites, tentatively identified as 2‐hydroxyadamantane‐1‐carboxylic acid and 3‐ethyladamantane‐2‐ol respectively. Accumulation of both metabolites was less than the loss of the parent compound, indicating that they would have continued to be transformed beyond 33 days and not accumulate as dead‐end metabolites. There were shifts in bacterial community composition during biotransformation, with Pseudomonas species, especially P. stutzeri, dominating enrichments irrespective of the diamondoid carboxylic acid. In conclusion, we demonstrated the microbial biotransformation of two diamondoid carboxylic acids, which has potential application for their removal and detoxification from vast OSPW that are a major environmental threat

    Bioaerosols in the Athens Metro: Metagenetic insights into the PM₁₀ microbiome in a naturally ventilated subway station

    Get PDF
    To date, few studies have examined the aerosol microbial content in Metro transportation systems. Here we characterised the aerosol microbial abundance, diversity and composition in the Athens underground railway system. PM10 filter samples were collected from the naturally ventilated Athens Metro Line 3 station “Nomismatokopio”. Quantitative PCR of the 16S rRNA gene and high throughput amplicon sequencing of the 16S rRNA gene and internal transcribed spacer (ITS) region was performed on DNA extracted from PM10 samples. Results showed that, despite the bacterial abundance (mean = 2.82 × 105 16S rRNA genes/m3 of air) being, on average, higher during day-time and weekdays, compared to night-time and weekends, respectively, the differences were not statistically significant. The average PM10 mass concentration on the platform was 107 ÎŒg/m3. However, there was no significant correlation between 16S rRNA gene abundance and overall PM10 levels. The Athens Metro air microbiome was mostly dominated by bacterial and fungal taxa of environmental origin (e.g. Paracoccus, Sphingomonas, Cladosporium, Mycosphaerella, Antrodia) with a lower contribution of human commensal bacteria (e.g. Corynebacterium, Staphylococcus). This study highlights the importance of both outdoor air and commuters as sources in shaping aerosol microbial communities. To our knowledge, this is the first study to characterise the mycobiome diversity in the air of a Metro environment based on amplicon sequencing of the ITS region. In conclusion, this study presents the first microbial characterisation of PM10 in the Athens Metro, contributing to the growing body of microbiome exploration within urban transit networks. Moreover, this study shows the vulnerability of public transport to airborne disease transmission

    Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes

    Get PDF
    Summary: Currently, little is known about the impact of silver nanoparticles (AgNPs) on ecologically important microorganisms such as ammonia-oxidizing bacteria (AOB). We performed a multi-analytical approach to demonstrate the effects of uncapped nanosilver (uAgNP), capped nanosilver (cAgNP) and Ag2SO4 on the activities of the AOB: Nitrosomonas europaea, Nitrosospira multiformis and Nitrosococcus oceani, and the growth of Escherichia coli and Bacillus subtilis as model bacterial systems in relation to AgNP type and concentration. All Ag treatments caused significant inhibition to the nitrification potential rates (NPRs) of Nitrosomonas europaea (decreased from 34 to cAgNP>uAgNP. In conclusion, AgNPs (especially cAgNPs) and Ag2SO4 adversely affected AOB activities and thus have the potential to severely impact key microbially driven processes such as nitrification in the environment

    The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris

    Get PDF
    Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≄10 mg L-1 n-BPBA; ≄50 mg L-1 tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≄10 mg L-1 n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L-1) were required to reduce cell growth in C. vulgaris. AEO at ≄10 mg L-1 stimulated E. huxleyi growth rate (p ≀ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future

    Rapid measurement tools or fast identification of bioaerosols

    Get PDF
    Bioaerosols are complex mixtures of airborne particles of biological origin (BioPM), which vary in size (~0.05-100 ÎŒm) and composition (viruses, bacteria, fungi/mould, pollen, cell fragments, and endotoxins). Many bioaerosols are of inhalable size (< 100 ÎŒm), but those < 10 ÎŒm are respirable and can penetrate deep into the respiratory system, making them a primary health concern(6). In addition to causing infectious diseases (e.g. tuberculosis and COVID-19), bioaerosols are associated with non-infectious diseases, such as hypersensitivity, allergies, chronic obstructive pulmonary disease (COPD) and asthma, that cause significant mortality and morbidity(4,7). Antimicrobial resistance (AMR) also poses an emerging and uncertain threat to public health worldwide, yet, AMR in bioaerosols is generally ignored leaving a major blindspot in the OneHealth approach to fighting AMR

    <i>amoA</i> Gene Abundances and Nitrification Potential Rates Suggest that Benthic Ammonia-Oxidizing Bacteria and Not Archaea Dominate N Cycling in the Colne Estuary, United Kingdom

    Get PDF
    ABSTRACT Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase ( amoA ) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 ÎŒmol N grams dry weight [gdw] −1 day −1 in June, increasing to 37.4 ÎŒmol N gdw −1 day −1 in January). At the estuary head, the nitrification potential was 4.3 ÎŒmol N gdw −1 day −1 in June, increasing to 11.7 ÎŒmol N gdw −1 day −1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. </jats:p

    Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440

    Get PDF
    The majority of the world's crude oil reserves consist of highly biodegraded heavy and super heavy crude oils and oil sands that have not yet been fully exploited. These vast resources contain complex mixtures of carboxylic acids known as naphthenic acids (NAs). NAs cause major environmental and economic problems, as they are recalcitrant, corrosive and toxic. Although aromatic acids make up a small proportion of most NA mixtures, they have demonstrable toxicities to some organisms (e.g. some bacteria and algae) and ideally need to be removed or reduced by remediation. The present study analysed the ability of Pseudomonas putida KT2440 to degrade highly recalcitrant aromatic acids, as exemplified by the alkyl phenylalkanoic acid (4'-t-butylphenyl)-4-butanoic acid (t-BPBA) and the more degradable (4'-n-butylphenyl)-4-butanoic acid (n-BPBA). n-BPBA was completely metabolized after 14 days, with the production of a persistent metabolite identified as (4'-n-butylphenyl)ethanoic acid (BPEA) which resulted from removal of two carbon atoms from the carboxyl side chain (beta-oxidation) as observed previously with a mixed consortium. However, when n-BPBA concentration was increased two-fold, degradation decreased by 56% with a concomitant six-fold decrease in cell numbers, suggesting that at greater concentrations, n-BPBA may be toxic to P. putida KT2440. In contrast, P. putida KT2440 was unable to degrade the highly recalcitrant t-BPBA even after 49 days. These findings have implications for NA bioremediation in the environment. © 2011

    Mineralization and nitrification: Archaea dominate ammonia-oxidising communities in grassland soils

    Get PDF
    In grasslands, N mineralization and nitrification are important processes and are controlled by several factors, including the in situ microbial community composition. Nitrification involves ammonia oxidising archaea (AOA) and bacteria (AOB) and although AOA and AOB co-exist in soils, they respond differently to environmental characteristics and there is evidence of AOA/AOB niche differentiation. Here, we investigated temporal variation in N mineralization and nitrification rates, together with bacterial, archaeal and ammonia-oxidiser communities in grassland soils, on different geologies: clay, Greensand and Chalk. Across geologies, N mineralization and nitrification rates were slower in the autumn than the rest of the year. Turnover times for soil ammonium pools were <24 h, whilst several days for nitrate. In clay soils, bacterial, archaeal, AOA, and AOB communities were clearly distinct from those in Chalk and Greensand soils. Spatially and temporally, AOA were more abundant than AOB. Notably, Nitrososphaera were predominant, comprising 37.4% of archaeal communities, with the vast majority of AOA found in Chalk and Greensand soils. AOA abundance positively correlated with nitrate concentration, whereas AOB abundance correlated with ammonium and nitrite concentrations, suggesting that these N compounds may be potential drivers for AOA/AOB niche differentiation in these grassland soils

    Bioaerosol Biomonitoring: Sampling Optimisation for Molecular Microbial Ecology

    Get PDF
    Bioaerosols (or biogenic aerosols) have largely been overlooked by molecular ecologists. However, this is rapidly changing as bioaerosols play key roles in public health, environmental chemistry, and the dispersal ecology of microbes. Due to the low environmental concentrations of bioaerosols, collecting sufficient biomass for molecular methods is challenging. Currently, no standardised methods for bioaerosol collection for molecular ecology research exist. Each study requires a process of optimisation, which greatly slows the advance of bioaerosol science. Here, we evaluated air filtration and liquid impingement for bioaerosol sampling across a range of environmental conditions. We also investigated the effect of sampling matrices, sample concentration strategies, and sampling duration on DNA yield. Air filtration using polycarbonate filters gave the highest recovery, but due to the faster sampling rates possible with impingement, we recommend this method for fine scale temporal/spatial ecological studies. We found that in order to prevent bias for the recovery of Gram‐positive bacteria, the matrix for impingement should be phosphate buffered saline. The optimal method for bioaerosol concentration from the liquid matrix was centrifugation. However, we also present a method using syringe filters for rapid in‐field recovery of bioaerosols from impingement samples, without compromising microbial diversity for High Throughput Sequencing approaches. Finally, we provide a resource that enables molecular ecologists to select the most appropriate sampling strategy for their specific research question
    corecore