32 research outputs found

    Analysis of timeliness of infectious disease reporting in the Netherlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Timely reporting of infectious disease cases to public health authorities is essential to effective public health response. To evaluate the timeliness of reporting to the Dutch Municipal Health Services (MHS), we used as quantitative measures the intervals between onset of symptoms and MHS notification, and between laboratory diagnosis and notification with regard to six notifiable diseases.</p> <p>Methods</p> <p>We retrieved reporting data from June 2003 to December 2008 from the Dutch national notification system for shigellosis, EHEC/STEC infection, typhoid fever, measles, meningococcal disease, and hepatitis A virus (HAV) infection. For each disease, median intervals between date of onset and MHS notification were calculated and compared with the median incubation period. The median interval between date of laboratory diagnosis and MHS notification was similarly analysed. For the year 2008, we also investigated whether timeliness is improved by MHS agreements with physicians and laboratories that allow direct laboratory reporting. Finally, we investigated whether reports made by post, fax, or e-mail were more timely.</p> <p>Results</p> <p>The percentage of infectious diseases reported within one incubation period varied widely, between 0.4% for shigellosis and 90.3% for HAV infection. Not reported within two incubation periods were 97.1% of shigellosis cases, 76.2% of cases of EHEC/STEC infection, 13.3% of meningococcosis cases, 15.7% of measles cases, and 29.7% of typhoid fever cases. A substantial percentage of infectious disease cases was reported more than three days after laboratory diagnosis, varying between 12% for meningococcosis and 42% for shigellosis. MHS which had agreements with physicians and laboratories showed a significantly shorter notification time compared to MHS without such agreements.</p> <p>Conclusions</p> <p>Over the study period, many cases of the six notifiable diseases were not reported within two incubation periods, and many were reported more than three days after laboratory diagnosis. An increase in direct laboratory reporting of diagnoses to MHS would improve timeliness, as would the use of fax rather than post or e-mail. Automated reporting systems have to be explored in the Netherlands. Development of standardised and improved measures for timeliness is needed.</p

    Oseltamivir-resistant influenza A(H1N1)pdm09 virus in Dutch travellers returning from Spain, August 2012

    Get PDF
    Two Dutch travellers were infected with oseltamivirresistant influenza A(H1N1)pdm09 viruses with an H275Y neuraminidase substitution in early August 2012. Both cases were probably infected during separate holidays at the Catalonian coast (Spain). No epidemiological connection between the two cases was found, and neither of them was treated with oseltamivir before specimen collection. Genetic analysis of the neuraminidase gene revealed the presence of previously described permissive mutations that may increase the likelihood of such strains emerging and spreading widely

    High and persistent excretion of hepatitis A virus in immunocompetent patients.

    Get PDF
    The duration and level of virus excretion in blood and faeces of patients with hepatitis A virus (HAV) infection were studied in relation to levels of alanine aminotransferase (ALT), disease severity and HAV genotype. Clinical data, blood and faeces were collected from 27 patients with acute hepatitis A (median age: 33 years) for a maximum of 26 weeks. Single blood donations from 55 other patients with acute HAV (median age: 32 years) were also used. Virus loads were quantified by competitive nested RT-PCR. HAV was excreted in faeces for a median period of 81 days after disease onset, with 50% of patients still excreting high levels at Day 36 (2 x 10(6) - 2 x 10(8) copies/ml faeces suspension). Viraemia was detected, but not quantifiable, for a median period of 42 days. In the first 10 days of illness, higher ALT levels were correlated with higher viraemia levels. Comparison of patients infected with genotype 1a with those infected with type 1b did not differ significantly in terms of the duration of HAV excretion or jaundice. In conclusion, faecal excretion of HAV is at a high titre in the first month, perhaps making patients infectious for a longer period than assumed currently. Blood banks should be aware that viraemia may be present for more than 1 month, and genotype did not affect the duration of virus excretion or jaundice

    Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    Get PDF
    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases

    Timeliness of contact tracing among flight passengers for influenza A/H1N1 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the initial containment phase of influenza A/H1N1 2009, close contacts of cases were traced to provide antiviral prophylaxis within 48 h after exposure and to alert them on signs of disease for early diagnosis and treatment. Passengers seated on the same row, two rows in front or behind a patient infectious for influenza, during a flight of ≥ 4 h were considered close contacts. This study evaluates the timeliness of flight-contact tracing (CT) as performed following national and international CT requests addressed to the Center of Infectious Disease Control (CIb/RIVM), and implemented by the Municipal Health Services of Schiphol Airport.</p> <p>Methods</p> <p>Elapsed days between date of flight arrival and the date passenger lists became available (contact details identified - CI) was used as proxy for timeliness of CT. In a retrospective study, dates of flight arrival, onset of illness, laboratory diagnosis, CT request and identification of contacts details through passenger lists, following CT requests to the RIVM for flights landed at Schiphol Airport were collected and analyzed.</p> <p>Results</p> <p>24 requests for CT were identified. Three of these were declined as over 4 days had elapsed since flight arrival. In 17 out of 21 requests, contact details were obtained within 7 days after arrival (81%). The average delay between arrival and CI was 3,9 days (range 2-7), mainly caused by delay in diagnosis of the index patient after arrival (2,6 days). In four flights (19%), contacts were not identified or only after > 7 days. CI involving Dutch airlines was faster than non-Dutch airlines (<it>P </it>< 0,05). Passenger locator cards did not improve timeliness of CI. In only three flights contact details were identified within 2 days after arrival.</p> <p>Conclusion</p> <p>CT for influenza A/H1N1 2009 among flight passengers was not successful for timely provision of prophylaxis. CT had little additional value for alerting passengers for disease symptoms, as this information already was provided during and after the flight. Public health authorities should take into account patient delays in seeking medical advise and laboratory confirmation in relation to maximum time to provide postexposure prophylaxis when deciding to install contact tracing measures. International standardization of CT guidelines is recommended.</p

    Severe acute respiratory infection caused by swine influenza virus in a child necessitating extracorporeal membrane oxygenation (ECMO), the Netherlands, October 2016.

    Get PDF
    In October 2016, a severe infection with swine influenza A(H1N1) virus of the Eurasian avian lineage occurred in a child with a previous history of eczema in the Netherlands, following contact to pigs. The patient's condition deteriorated rapidly and required life support through extracorporeal membrane oxygenation. After start of oseltamivir treatment and removal of mucus plugs, the patient fully recovered. Monitoring of more than 80 close unprotected contacts revealed no secondary cases

    Case of seasonal reassortant a(H1N2) influenza virus infection, the Netherlands, March 2018

    Get PDF
    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases

    Transmission of Novel Influenza A(H1N1) in Households with Post-Exposure Antiviral Prophylaxis

    Get PDF
    BACKGROUND: Despite impressive advances in our understanding of the biology of novel influenza A(H1N1) virus, little is as yet known about its transmission efficiency in close contact places such as households, schools, and workplaces. These are widely believed to be key in supporting propagating spread, and it is therefore of importance to assess the transmission levels of the virus in such settings. METHODOLOGY/PRINCIPAL FINDINGS: We estimate the transmissibility of novel influenza A(H1N1) in 47 households in the Netherlands using stochastic epidemic models. All households contained a laboratory confirmed index case, and antiviral drugs (oseltamivir) were given to both the index case and other households members within 24 hours after detection of the index case. Among the 109 household contacts there were 9 secondary infections in 7 households. The overall estimated secondary attack rate is low (0.075, 95%CI: 0.037-0.13). There is statistical evidence indicating that older persons are less susceptible to infection than younger persons (relative susceptibility of older persons: 0.11, 95%CI: 0.024-0.43. Notably, the secondary attack rate from an older to a younger person is 0.35 (95%CI: 0.14-0.61) when using an age classification of <or=12 versus >12 years, and 0.28 (95%CI: 0.12-0.50) when using an age classification of <or=18 versus >18 years. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the overall household transmission levels of novel influenza A(H1N1) in antiviral-treated households were low in the early stage of the epidemic. The relatively high rate of adult-to-child transmission indicates that control measures focused on this transmission route will be most effective in minimizing the total number of infections
    corecore