6,969 research outputs found

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced

    Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening

    Full text link
    A simple theory for glassy polymeric mechanical response which accounts for large scale chain relaxation is presented. It captures the crossover from perfect-plastic response to strong strain hardening as the degree of polymerization NN increases, without invoking entanglements. By relating hardening to interactions on the scale of monomers and chain segments, we correctly predict its magnitude. Strain activated relaxation arising from the need to maintain constant chain contour length reduces the NN dependence of the characteristic relaxation time by a factor ∼ϵ˙N\sim \dot\epsilon N during active deformation at strain rate ϵ˙\dot\epsilon. This prediction is consistent with results from recent experiments and simulations, and we suggest how it may be further tested experimentally.Comment: The theoretical treatment of the mechanical response has been significantly revised, and the arguments for coherent relaxation during active deformation made more transparen

    Rods are less fragile than spheres: Structural relaxation in dense liquids composed of anisotropic particles

    Full text link
    We perform extensive molecular dynamics simulations of dense liquids composed of bidisperse dimer- and ellipse-shaped particles in 2D that interact via repulsive contact forces. We measure the structural relaxation times obtained from the long-time decay of the self-part of the intermediate scattering function for the translational and rotational degrees of freedom (DOF) as a function of packing fraction \phi, temperature T, and aspect ratio \alpha. We are able to collapse the \phi and T-dependent structural relaxation times for disks, and dimers and ellipses over a wide range of \alpha, onto a universal scaling function {\cal F}_{\pm}(|\phi-\phi_0|,T,\alpha), which is similar to that employed in previous studies of dense liquids composed of purely repulsive spherical particles in 3D. {\cal F_{\pm}} for both the translational and rotational DOF are characterized by the \alpha-dependent scaling exponents \mu and \delta and packing fraction \phi_0(\alpha) that signals the crossover in the scaling form {\cal F}_{\pm} from hard-particle dynamics to super-Arrhenius behavior for each aspect ratio. We find that the fragility at \phi_0, m(\phi_0), decreases monotonically with increasing aspect ratio for both ellipses and dimers. Moreover, the results for the slow dynamics of dense liquids composed of dimer- and ellipse-shaped particles are qualitatively the same, despite the fact that zero-temperature static packings of dimers are isostatic, while static packings of ellipses are hypostatic.Comment: 10 pages, 17 figures, and 1 tabl

    Reversible plasticity in amorphous materials

    Get PDF
    A fundamental assumption in our understanding of material rheology is that when microscopic deformations are reversible, the material responds elastically to external loads. Plasticity, i.e. dissipative and irreversible macroscopic changes in a material, is assumed to be the consequence of irreversible microscopic events. Here we show direct evidence for reversible plastic events at the microscopic scale in both experiments and simulations of two-dimensional foam. In the simulations, we demonstrate a link between reversible plastic rearrangement events and pathways in the potential energy landscape of the system. These findings represent a fundamental change in our understanding of materials--microscopic reversibility does not necessarily imply elasticity.Comment: Revised pape

    Geometrical families of mechanically stable granular packings

    Full text link
    We enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles (N < 16), we find that the dynamics is deterministic and highly contracting. That is, if the system is initialized in a MS packing at a given shear strain, it will quickly lock into a periodic orbit at subsequent shear strain, and therefore sample only a very small fraction of the possible MS packings in steady state. In studies with N>16, we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady-state. This work is part of our long-term research program to develop a master-equation formalism to describe macroscopic slowly driven granular systems in terms of collections of small subsystems.Comment: 18 pages, 23 figures, 5 table

    Characterization and cloning of fasciclin I and fasciclin II glycoproteins in the grasshopper

    Get PDF
    Monoclonal antibodies were previously used to identify two glycoproteins, called fasciclin I and II (70 and 95 kDa, respectively), which are expressed on different subsets of axon fascicles in the grasshopper (Schistocerca americana) embryo. Here the monoclonal antibodies were used to purify these two membrane-associated glycoproteins for further characterization. Fasciclin II appears to be an integral membrane protein, where fasciclin I is an extrinsic membrane protein. The amino acid sequences of the amino terminus and fragments of both proteins were determined. Using synthetic oligonucleotide probes and antibody screening, we isolated genomic and cDNA clones. Partial DNA sequences of these clones indicate that they encode fasciclins I and II

    Measurements of the Yield Stress in Frictionless Granular Systems

    Full text link
    We perform extensive molecular dynamics simulations of 2D frictionless granular materials to determine whether these systems can be characterized by a single static yield shear stress. We consider boundary-driven planar shear at constant volume and either constant shear force or constant shear velocity. Under steady flow conditions, these two ensembles give similar results for the average shear stress versus shear velocity. However, near jamming it is possible that the shear stress required to initiate shear flow can differ substantially from the shear stress required to maintain flow. We perform several measurements of the shear stress near the initiation and cessation of flow. At fixed shear velocity, we measure the average shear stress Σyv\Sigma_{yv} in the limit of zero shear velocity. At fixed shear force, we measure the minimum shear stress Σyf\Sigma_{yf} required to maintain steady flow at long times. We find that in finite-size systems Σyf>Σyv\Sigma_{yf} > \Sigma_{yv}, which implies that there is a jump discontinuity in the shear velocity from zero to a finite value when these systems begin flowing at constant shear force. However, our simulations show that the difference Σyf−Σyv\Sigma_{yf} - \Sigma_{yv}, and thus the discontinuity in the shear velocity, tend to zero in the infinite system size limit. Thus, our results indicate that in the large system limit, frictionless granular systems are characterized by a single static yield shear stress. We also monitor the short-time response of these systems to applied shear and show that the packing fraction of the system and shape of the velocity profile can strongly influence whether or not the shear stress at short times overshoots the long-time average value.Comment: 7 pages and 6 figure

    Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. III. CREB Is Necessary for Presynaptic Functional Plasticity

    Get PDF
    AbstractIncreased cAMP (in dunce mutants) leads to an increase in the structure and function of the Drosophila neuromuscular junction. Synaptic Fasciclin II (Fas II) controls this structural plasticity, but does not alter synaptic function. Here, we show that CREB, the cAMP response element–binding protein, acts in parallel with Fas II to cause an increase in synaptic strength. Expression of the CREB repressor (dCREB2-b) in the dunce mutant blocks functional but not structural plasticity. Expression of the CREB activator (dCREB2-a) increases synaptic strength only in FasII mutants that increase bouton number. This CREB-mediated increase in synaptic strength is due to increased presynaptic transmitter release. Expression of dCREB2-a in a FasII mutant background genetically reconstitutes this cAMP-dependent plasticity. Thus, cAMP initiates parallel changes in CREB and Fas II to achieve long-term synaptic enhancement
    • …
    corecore