37 research outputs found

    Effectiveness of dermoscopy in skin cancer diagnosis

    Get PDF
    Clinical Inquiries question: Does dermoscopy improve the effectiveness of skin cancer diagnosis when used for skin cancer screening? Evidence-based answer: Dermoscopy added to visual inspection is more accurate than visual inspection alone in the diagnosis of melanoma and basal cell carcinoma (BCC). However, there is insufficient evidence to draw conclusions on the effectiveness of dermoscopy in the diagnosis of squamous cell carcinoma (SCC; strength of recommendation B: based on systematic reviews of randomized controlled trials [RCTs], and prospective and retrospective observational studies).Sydney Davis, MD; Cleveland Piggott, MD, MPH; Corey Lyon, DO; Kristen DeSanto, MSLS, MS, RD, AHIPDr Davis is a resident family physician, Dr Piggott is Assistant Professor and Director of Diversity & Health Equity for Family Medicine, Dr Lyon is Associate Professor in the Department of Family Medicine, and Ms DeSanto is Clinical Librarian in the Strauss Health Sciences Library, all at the University of Colorado in Denver.Includes bibliographical reference

    Automated deep learning segmentation of high-resolution 7 T postmortem MRI for quantitative analysis of structure-pathology correlations in neurodegenerative diseases

    Full text link
    Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution of 135 postmortem human brain tissue specimens imaged at 0.3 mm3^{3} isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We then segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter. We show generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm^3 and 0.16 mm^3 isotropic T2*w FLASH sequence at 7T. We then compute localized cortical thickness and volumetric measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, Jupyter notebooks, and the containerized executables are publicly available at: https://pulkit-khandelwal.github.io/exvivo-brain-upennComment: Preprint submitted to NeuroImage Project website: https://pulkit-khandelwal.github.io/exvivo-brain-upen

    The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory

    Get PDF
    Recent gravitational-wave observations from the LIGO and Virgo observatories have brought a sense of great excitement to scientists and citizens the world over. Since September 2015,10 binary black hole coalescences and one binary neutron star coalescence have been observed. They have provided remarkable, revolutionary insight into the "gravitational Universe" and have greatly extended the field of multi-messenger astronomy. At present, Advanced LIGO can see binary black hole coalescences out to redshift 0.6 and binary neutron star coalescences to redshift 0.05. This probes only a very small fraction of the volume of the observable Universe. However, current technologies can be extended to construct "3rd Generation" (3G) gravitational-wave observatories that would extend our reach to the very edge of the observable Universe. The event rates over such a large volume would be in the hundreds of thousands per year (i.e. tens per hour). Such 3G detectors would have a 10-fold improvement in strain sensitivity over the current generation of instruments, yielding signal-to-noise ratios of 1000 for events like those already seen. Several concepts are being studied for which engineering studies and reliable cost estimates will be developed in the next 5 years

    Author Correction: An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF

    Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury

    No full text
    The pathologic process of chronic phase traumatic brain injury is associated with spreading inflammation, cell death, and neural dysfunction. It is thought that sequestration of inflammatory mediators can facilitate recovery and promote an environment that fosters cellular regeneration. Studies have targeted post-traumatic brain injury inflammation with the use of pharmacotherapy and cell therapy. These therapeutic options are aimed at reducing the edematous and neurodegenerative inflammation that have been associated with compromising the integrity of the blood-brain barrier. Although studies have yielded positive results from anti-inflammatory pharmacotherapy and cell therapy individually, emerging research has begun to target inflammation using combination therapy. The joint use of anti-inflammatory drugs alongside stem cell transplantation may provide better clinical outcomes for traumatic brain injury patients. Despite the promising results in this field of research, it is important to note that most of the studies mentioned in this review have completed their studies using animal models. Translation of this research into a clinical setting will require additional laboratory experiments and larger preclinical trials

    Comparison of qPCR with ddPCR for the Quantification of JC Polyomavirus in CSF from Patients with Progressive Multifocal Leukoencephalopathy

    No full text
    Background: Lytic infection of oligodendrocytes by the human JC polyomavirus (JCPyV) results in the demyelinating disease called progressive multifocal leukoencephalopathy (PML). The detection of viral DNA in the cerebrospinal fluid (CSF) by PCR is an important diagnostic tool and, in conjunction with defined radiological and clinical features, can provide diagnosis of definite PML, avoiding the need for brain biopsy. The main aim of this study is to compare the droplet digital PCR (ddPCR) assay with the gold standard quantitative PCR (qPCR) for the quantification of JC viral loads in clinical samples. Methods: A total of 62 CSF samples from 31 patients with PML were analyzed to compare the qPCR gold standard technique with ddPCR to detect conserved viral DNA sequences in the JCPyV genome. As part of the validation process, ddPCR results were compared to qPCR data obtained in 42 different laboratories around the world. In addition, the characterization of a novel triplex ddPCR to detect viral DNA sequence from both prototype and archetype variants and a cellular housekeeping reference gene is described. Triplex ddPCR was used to analyze the serum from six PML patients and from three additional cohorts, including 20 healthy controls (HC), 20 patients with multiple sclerosis (MS) who had never been treated with natalizumab (no-NTZ-treated), and 14 patients with MS who were being treated with natalizumab (NTZ-treated); three from this last group seroconverted during the course of treatment with natalizumab. Results: JCPyV DNA was detected only by ddPCR for 5 of the 62 CSF samples (8%), while remaining undetected by qPCR. For nine CSF samples (15%), JCPyV DNA was at the lower limit of quantification for qPCR, set at <250 copies/mL, and therefore no relative quantitation could be determined. By contrast, exact copies of JCPyV for each of these samples were quantified by ddPCR. No differences were observed between qPCR and ddPCR when five standardized plasma samples were analyzed for JCPyV in 42 laboratories in the United States and Europe. JCPyV-DNA was undetected in all the sera from HC and MS cohorts tested by triplex ddPCR, while serum samples from six patients with PML tested positive for JCPyV. Conclusion: This study shows strong correlation between ddPCR and qPCR with increased sensitivity of the ddPCR assay. Further work will be needed to determine whether multiplex ddPCR can be useful to determine PML risk in natalizumab-treated MS patients

    Neuroprotective effects of human bone marrow mesenchymal stem cells against cerebral ischemia are mediated in part by an anti-apoptotic mechanism

    No full text
    Transplantation of human bone marrow mesenchymal stem cells (hMSCs) stands as a potent stroke therapy, but its exact mechanism remains unknown. This study investigated the anti-apoptotic mechanisms by which hMSCs exert neuroprotective effects on cerebral ischemia. Primary mixed cultures of rat neurons and astrocytes were cultured and exposed to oxygen-glucose deprivation. A two-hour period of “reperfusion” in standard medium and normoxic conditions was allowed and immediately followed by hMSCs and/or Bcl-2 antibody treatment. Cell viability of primary rat neurons and astrocytes was determined by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide and trypan blue exclusion methods. hMSC survival and differentiation were characterized by immunocytochemistry, while the concentration of Bcl-2 in the supernatant was measured by enzyme-linked immunosorbent assay to reveal the secretory anti-apoptotic function of hMSCs. Cultured hMSCs expressed embryonic-like stem cell phenotypic markers CXCR4, Oct4, SSEA4, and Nanog, as well as immature neural phenotypic marker Nestin. Primary rat neurons and astrocytes were protected from oxygen-glucose deprivation by hMSCs, which was antagonized by the Bcl-2 antibody. However, Bcl-2 levels in the supernatants did not differ between hMSC- and non-treated cells exposed to oxygen-glucose deprivation. Neuroprotective effects of hMSCs against cerebral ischemia were partially mediated by the anti-apoptotic mechanisms. However, further studies are warranted to fully elucidate this pathway
    corecore