3,102 research outputs found

    Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

    Get PDF
    A search for long-lived heavy neutral leptons (HNLs) is presented, which considers the hadronic final state and coupling scenarios involving all three lepton generations in the 2–20 GeV HNL mass range for the first time. Events comprising two leptons (electrons or muons) and jets are analyzed in a data sample of proton-proton collisions, recorded with the CMS experiment at the CERN LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. A novel jet tagger, based on a deep neural network, has been developed to identify jets from an HNL decay using various features of the jet and its constituent particles. The network output can be used as a powerful discriminating tool to probe a broad range of HNL lifetimes and masses. Contributions from background processes are determined from data. No excess of events in data over the expected background is observed. Upper limits on the HNL production cross section are derived as functions of the HNL mass and the three coupling strengths VlN to each lepton generation l and presented as exclusion limits in the coupling-mass plane, as lower limits on the HNL lifetime, and on the HNL mass. In this search, the most stringent limit on the coupling strength is obtained for pure muon coupling scenarios; values of |VμN2| > 5 (4) × 10−7 are excluded for Dirac (Majorana) HNLs with a mass of 10 GeV at a confidence level of 95% that correspond to proper decay lengths of 17 (10) mm

    Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling Formula Presented

    Get PDF
    Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s\sqrt{s}=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb1^{−1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: αS_S (mZ_Z)=0.1229 0.00400.0050\frac{0.0040}{-0.0050} , the most precise αS_SmZ_Z value obtained using jet substructure observable

    Search for a resonance decaying to a W boson and a photon in proton-proton collisions at s \sqrt{s} = 13 TeV using leptonic W boson decays

    Get PDF
    A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb−1. Particle X has electric charge ±1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%)

    Observation of WWγ Production and Search for Hγ Production in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    The observation of WWγ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138  fb−1 is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ is 5.9±0.8(stat)±0.8(syst)±0.7(modeling)  fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks

    Observation of four top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for an exotic decay of the Higgs boson into a Z boson and a pseudoscalar particle in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for a vector-like quark T′ → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark T′, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first T′ search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet T′ states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a T′ quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength κT = 0.25 and a relative decay width Γ/MT′ < 5%

    KS0_{S}^0 and Λ (Λ)\overline Λ) two-particle femtoscopic correlations in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Get PDF
    Two-particle correlations are presented for K 0 S , Λ, and Λ strange hadrons as a function of relative momentum in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The dataset corresponds to an integrated luminosity of 0.607 nb−1 and was collected using the CMS detector at the CERN LHC. These correlations are sensitive to quantum statistics and to final-state interactions between the particles. The source size extracted from the K 0 S K 0 S correlations is found to decrease from 4.6 to 1.6 fm in going from central to peripheral collisions. Strong interaction scattering parameters (i.e., scattering length and effective range) are determined from the ΛK 0 S and ΛΛ (including their charge conjugates) correlations using the Lednický–Lyuboshitz model and are compared to theoretical and other experimental results

    Search for direct pair production of supersymmetric partners of τ leptons in the final state with two hadronically decaying τ leptons and missing transverse momentum in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for the direct production of a pair of τ sleptons, the supersymmetric partners of τ leptons, is presented. Each τ slepton is assumed to decay to a τ lepton and the lightest supersymmetric particle (LSP), which is assumed to be stable and to not interact in the detector, leading to an imbalance in the total reconstructed transverse momentum. The search is carried out in events identified as containing two τ leptons, each decaying to one or more hadrons and a neutrino, and significant transverse momentum imbalance. In addition to scenarios in which the τ sleptons decay promptly, the search also addresses scenarios in which the τ sleptons have sufficiently long lifetimes to give rise to nonprompt τ leptons. The data were collected in proton-proton collisions at a center-of-mass energy of 13  TeV at the CERN LHC with the CMS detector in 2016–2018, and correspond to an integrated luminosity of 138  fb−1. No significant excess is seen with respect to standard model expectations. Upper limits on cross sections for the pair production of τ sleptons are obtained in the framework of simplified models. In a scenario in which the τ sleptons are superpartners of left-handed τ leptons, and each undergoes a prompt decay to a τ lepton and a nearly massless LSP, τ slepton masses between 115 and 340 GeV are excluded. In a scenario in which the lifetime of the τ sleptons corresponds to cτ0=0.1  mm, where τ0 represents the mean proper lifetime of the τ slepton, masses between 150 and 220 GeV are excluded

    Search for the Z Boson Decay to ττμμ in Proton-Proton Collisions at √s = 13 TeV

    Get PDF
    The first search for the boson decay to ⁢⁢⁢ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138  fb−1. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.9 times the standard model expectation is placed on the ratio of the →⁢⁢⁢ to →4⁢ branching fractions. Limits are also placed on the six flavor-conserving four-lepton effective-field-theory operators involving two muons and two tau leptons, for the first time testing all such operators
    corecore