258 research outputs found
Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism.
Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood
10Gbit/s modulation of a fast switching slotted Fabry-PĂ©rot tunable laser
The device used is a three-section, 3mum wide ridge waveguide laser based on commercially available material. During the fabrication a series of slots are introduced into the front and back sections, which act as sites of internal reflections. The slots are etched to a depth that just penetrates the top of the upper waveguide resulting in an internal reflectance of-1% at each slot. The front, middle, and back sections are 180, 690 and 170 microns long respectively. In this work the back and middle sections are tied together electrically allowing simpler control of the device. By varying the applied DC currents, eight discrete channels are observed over a range of approximately 19nm
Recommended from our members
An Omentum-inspired 3D PEG Hydrogel for Identifying ECM-drivers of Drug Resistant Ovarian Cancer
Ovarian cancer (OvCa) is a challenging disease to treat due to poor screening techniques and late diagnosis. There is an urgent need for additional therapy options, as patients recur in 70% of cases. The limited availability of clinical treatment options could be a result of poor predictions in early stage drug screens on standard tissue culture polystyrene (TCPS). TCPS does not capture the mechanical and biochemical cues that cells experience in vivo, which can impact how cells will respond to a drug. Therefore, an in vitro model that captures some of the microenvironment features that the cells experience in vivo could provide better insights into drug responses. In this study, we formed 3D multicellular tumor spheroids (MCTS) in microwells and encapsulated them in 3D omentum-inspired hydrogels. SKOV-3 MCTS were resistant to Paclitaxel in our 3D hydrogels compared to a monolayer on TCPS. Toward clinical application, we tested cells from patients [ovarian carcinoma ascites spheroids (OCAS)] who had been treated with Paclitaxel, and drug responses predicted by using the 3D omentum-inspired hydrogels demonstrated the lack of the Paclitaxel response of these samples. Additionally, we observed the presence of collagen production around the encapsulated SKOV-3 MCTS, but not significantly on TCPS. Our results demonstrated that our 3D omentum-inspired hydrogel is an improved in vitro drug testing platform to study the OvCa drug response for patient-derived cells and helped us identify collagen 3 as a potential driver of Paclitaxel resistance in 3D
Foreign Aid
The goal of this presentation is to demonstrate the research regarding foreign aid. We will present how foreign aid is received in the nations of Russia, Afghanistan, and Haiti to incorporate three different regions of the world. First, we will define foreign aid by reviewing its history in comparison to how it is practiced today. We will also look at why the United States initially decided to provide foreign aid to the referenced countries, but how the original intent actually caused issues and concerns within these countries and provided little to no actual help. In addition, we will expose the problem of dependency the discussed countries have on the United States due to the current process of foreign aid. Lastly, we will present four questions to ask when researching the best methods of cross-cultural aid and a suggested call to action. By reviewing the different aspects of foreign aid, we hope to educate our audience on ways it can either weaken or empower receiving countries
ÎFosB Regulates Gene Expression and Cognitive Dysfunction in a Mouse Model of Alzheimer\u27s Disease.
Alzheimer\u27s disease (AD) is characterized by cognitive decline and 5- to 10-fold increased seizure incidence. How seizures contribute to cognitive decline in AD or other disorders is unclear. We show that spontaneous seizures increase expression of ÎFosB, a highly stable Fos-family transcription factor, in the hippocampus of an AD mouse model. ÎFosB suppressed expression of the immediate early gene c-Fos, which is critical for plasticity and cognition, by binding its promoter and triggering histone deacetylation. Acute histone deacetylase (HDAC) inhibition or inhibition of ÎFosB activity restored c-Fos induction and improved cognition in AD mice. Administration of seizure-inducing agents to nontransgenic mice also resulted in ÎFosB-mediated suppression of c-Fos, suggesting that this mechanism is not confined to AD mice. These results explain observations that c-Fos expression increases after acute neuronal activity but decreases with chronic activity. Moreover, these results indicate a general mechanism by which seizures contribute to persistent cognitive deficits, even during seizure-free periods
Epigenetic suppression of hippocampal calbindin-D28k by ÎFosB drives seizure-related cognitive deficits.
The calcium-binding protein calbindin-D28k is critical for hippocampal function and cognition, but its expression is markedly decreased in various neurological disorders associated with epileptiform activity and seizures. In Alzheimer\u27s disease (AD) and epilepsy, both of which are accompanied by recurrent seizures, the severity of cognitive deficits reflects the degree of calbindin reduction in the hippocampal dentate gyrus (DG). However, despite the importance of calbindin in both neuronal physiology and pathology, the regulatory mechanisms that control its expression in the hippocampus are poorly understood. Here we report an epigenetic mechanism through which seizures chronically suppress hippocampal calbindin expression and impair cognition. We demonstrate that ÎFosB, a highly stable transcription factor, is induced in the hippocampus in mouse models of AD and seizures, in which it binds and triggers histone deacetylation at the promoter of the calbindin gene (Calb1) and downregulates Calb1 transcription. Notably, increasing DG calbindin levels, either by direct virus-mediated expression or inhibition of ÎFosB signaling, improves spatial memory in a mouse model of AD. Moreover, levels of ÎFosB and calbindin expression are inversely related in the DG of individuals with temporal lobe epilepsy (TLE) or AD and correlate with performance on the Mini-Mental State Examination (MMSE). We propose that chronic suppression of calbindin by ÎFosB is one mechanism through which intermittent seizures drive persistent cognitive deficits in conditions accompanied by recurrent seizures
Comparative Study of Multicellular Tumor Spheroid Formation Methods and Implications for Drug Screening
Improved in vitro models are needed to better understand cancer progression and bridge the gap between in vitro proof-of-concept studies, in vivo validation, and clinical application. Multicellular tumor spheroids (MCTS) are a popular method for three-dimensional (3D) cell culture, because they capture some aspects of the dimensionality, cellâcell contact, and cellâmatrix interactions seen in vivo. Many approaches exist to create MCTS from cell lines, and they have been used to study tumor cell invasion, growth, and how cells respond to drugs in physiologically relevant 3D microenvironments. However, there are several discrepancies in the observations made of cell behaviors when comparing between MCTS formation methods. To resolve these inconsistencies, we created and compared the behavior of breast, prostate, and ovarian cancer cells across three MCTS formation methods: in polyNIPAAM gels, in microwells, or in suspension culture. These methods formed MCTS via proliferation from single cells or passive aggregation, and therefore showed differential reliance on genes important for cellâcell or cellâmatrix interactions. We also found that the MCTS formation method dictated drug sensitivity, where MCTS formed over longer periods of time via clonal growth were more resistant to treatment. Toward clinical application, we compared an ovarian cancer cell line MCTS formed in polyNIPAAM with cells from patient-derived malignant ascites. The method that relied on clonal growth (PolyNIPAAM gel) was more time and cost intensive, but yielded MCTS that were uniformly spherical, and exhibited the most reproducible drug responses. Conversely, MCTS methods that relied on aggregation were faster, but yielded MCTS with grape-like, lobular structures. These three MCTS formation methods differed in culture time requirements and complexity, and had distinct drug response profiles, suggesting the choice of MCTS formation method should be carefully chosen based on the application required
The Prevalence of Latent Mycobacterium Tuberculosis Infection Based on an Interferon-Îł Release Assay: A Cross-Sectional Survey Among Urban Adults in Mwanza, Tanzania.
One third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis (LTBI). Surveys of LTBI are rarely performed in resource poor TB high endemic countries like Tanzania although low-income countries harbor the largest burden of the worlds LTBI. The primary objective was to estimate the prevalence of LTBI in household contacts of pulmonary TB cases and a group of apparently healthy neighborhood controls in an urban setting of such a country. Secondly we assessed potential impact of LTBI on inflammation by quantitating circulating levels of an acute phase reactant: alpha-1-acid glycoprotein (AGP) in neighborhood controls. The study was nested within the framework of two nutrition studies among TB patients in Mwanza, Tanzania. Household contacts- and neighborhood controls were invited to participate. The study involved a questionnaire, BMI determination and blood samples to measure AGP, HIV testing and a Quantiferon Gold In tube (QFN-IT) test to detect signs of LTBI. 245 household contacts and 192 neighborhood controls had available QFN-IT data. Among household contacts, the proportion of QFT-IT positive was 59% compared to 41% in the neighborhood controls (pâ=â0.001). In a linear regression model adjusted for sex, age, CD4 and HIV, a QFT-IT positive test was associated with a 10% higher level of alpha-1-acid glycoprotein(AGP) (10(B) 1.10, 95% CI 1.01; 1.20, pâ=â0.03), compared to individuals with a QFT-IT negative test. LTBI is highly prevalent among apparently healthy urban Tanzanians even without known exposure to TB in the household. LTBI was found to be associated with elevated levels of AGP. The implications of this observation merit further studies
Recommended from our members
Understanding the impact of initial COVID-19 restrictions on physical activity, wellbeing and quality of life in shielding adults with end-stage renal disease in the United Kingdom Dialysing at home versusIn-Centre and their experiences with telemedicine
Early in the coronavirus-2019 (COVID-19) containment strategy, people with end-stage renal disease (ESRD) were identified as extremely clinically vulnerable and subsequently asked to âshieldâ at home where possible. The aim of this study was to investigate how these restrictions and the transition to an increased reliance on telemedicine within clinical care of people living with kidney disease impacted the physical activity (PA), wellbeing and quality of life (QoL) of adults dialysing at home (HHD) or receiving in-centre haemodialysis (ICHD) in the UK. Individual semistructured telephone interviews were conducted with adults receiving HHD (n = 10) or ICHD (n = 10), were transcribed verbatim and, subsequently, thematically analysed. As result of the COVID-19 restrictions, PA, wellbeing and QoL of people with ESRD were found to have been hindered. However, widespread support for the continued use of telemedicine was strongly advocated and promoted independence and satisfaction in patient care. These findings highlight the need for more proactive care of people with ESRD if asked to shield again, as well as increased awareness of safe and appropriate PA resources to help with home-based PA and emotional wellbeing
- âŠ