918 research outputs found

    Discovery of a 75 day orbit in XTE J1543-568

    Get PDF
    Dedicated monitoring of the transient X-ray pulsar XTE J1543-568 during the first year after its discovery has revealed the unambiguous detection of a binary orbit. The orbital period is 75.56+/-0.25 d, and the projected semi-major axis 353+/-8 lt-sec. The mass function and position in the pulse period versus orbital period diagram are consistent with XTE J1543-568 being a Be X-ray binary. The eccentricity of less than 0.03 (2 sigma) is among the lowest for the 12 Be X-ray binaries whose orbits have now been measured. This confirms the suspicion that small kick velocities of neutron stars during supernovae are more common than expected. The distance is estimated to be larger than 10 kpc, and the luminosity at least 1E37 erg/s.Comment: Accepted for publication in ApJ Letter

    ASCA Observation of the New Transient X-ray Pulsar XTE J0111.2-7317 in the Small Magellanic Cloud

    Get PDF
    The new transient X-ray pulsar XTE J0111.2-7317 was observed with Advanced Satellite for Cosmology and Astrophysics (ASCA) on 1998 November 18, a few days after its discovery with the Proportional Counter Array onboard the Rossi X-ray Timing Explorer. The source was detected at a flux level of 3.6x10^-10 erg cm^-2 s^-1 in the 0.7--10.0 keV band, which corresponds to the X-ray luminosity of 1.8x10^38 erg s^-1, if a distance of 65 kpc for this pulsar in the Small Magellanic Cloud is assumed. Nearly sinusoidal pulsations with a period of 30.9497 +/- 0.0004 s were unambiguously detected during the ASCA observation. The pulsed fraction is low and slightly energy dependent with average value of \~27%. The energy spectrum shows a large soft excess below ~2 keV when fitted to a simple power-law type model. The soft excess is eliminated if the spectrum is fitted to an ``inversely broken power-law'' model, in which photon indices below and above a break energy of 1.5 keV are 2.3 and 0.8, respectively. The soft excess can also be described by a blackbody or a thermal bremsstrahlung when the spectrum above ~2 keV is modeled by a power-law. In these models, however, the thermal soft component requires a very large emission zone, and hence it is difficult to explain the observed pulsations at energies below 2 keV. A bright state of the source enables us to identify a weak iron line feature at 6.4 keV with an equivalent width of 50 +/- 14 eV. Pulse phase resolved spectroscopy revealed a slight hardening of the spectrum and marginal indication of an increase in the iron line strength during the pulse maximum.Comment: 8 pages, 5 Figures, to be published in ApJ. Also available at http://www-cr.scphys.kyoto-u.ac.jp/member/jun/job

    XMM-Newton discovery of transient X-ray pulsar in NGC 1313

    Full text link
    We report on the discovery and analysis of the transient X-ray pulsar XMMU J031747.5-663010 detected in the 2004 November 23 XMM-Newton observation of the spiral galaxy NGC 1313. The X-ray source exhibits pulsations with a period P~765.6 s and a nearly sinusoidal pulse shape and pulsed fraction ~38% in the 0.3-7 keV energy range. The X-ray spectrum of XMMU J031747.5-663010 is hard and is well fitted with an absorbed simple power law of photon index ~1.5 in the 0.3-7 keV energy band. The X-ray properties of the source and the absence of an optical/UV counterpart brighter than 20 mag allow us to identify XMMU J031747.5-663010 as an accreting X-ray pulsar located in NGC 1313. The estimated absorbed 0.3-7 keV luminosity of the source L~1.6\times 10^{39} ergs/s, makes it one of the brightest X-ray pulsars known. Based on the relatively long pulse period and transient behaviour of the source, we classify it as a Be binary X-ray pulsar candidate. XMMU J031747.5-663010 is the second X-ray pulsar detected outside the Local Group, after transient 18 s pulsating source CXOU J073709.1+653544 discovered in the nearby spiral galaxy NGC 2403.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS. Updated to match the accepted versio

    Three New Long Period X-ray Pulsars Discovered in the Small Magellanic Cloud

    Get PDF
    The Small Magellanic Cloud is increasingly an invaluable laboratory for studying accreting and isolated X-ray pulsars. We add to the class of compact SMC objects by reporting the discovery of three new long period X-ray pulsars detected with the {\it Chandra X-ray Observatory}. The pulsars, with periods of 152, 304 and 565 seconds, all show hard X-ray spectra over the range from 0.6 - 7.5 keV. The source positions of the three pulsars are consistent with known H-alpha emission sources, indicating they are likely to be Be type X-ray binary star systems.Comment: Accepted for publication in the Astrophysical Journa

    X-ray Observations and Infrared Identification of the Transient 7.8 s X-ray Binary Pulsar XTE J1829-098

    Full text link
    XMM-Newton and Chandra observations of the transient 7.8 s pulsar XTE J1829-098 are used to characterize its pulse shape and spectrum, and to facilitate a search for an optical or infrared counterpart. In outburst, the absorbed, hard X-ray spectrum with Gamma = 0.76+/-0.13 and N_H = (6.0+/-0.6) x 10^{22} cm^{-2} is typical of X-ray binary pulsars. The precise Chandra localization in a faint state leads to the identification of a probable infrared counterpart at R.A. = 18h29m43.98s, decl. = -09o51'23.0" (J2000.0) with magnitudes K=12.7, H=13.9, I>21.9, and R>23.2. If this is a highly reddened O or B star, we estimate a distance of 10 kpc, at which the maximum observed X-ray luminosity is 2x10^{36} ergs s^{-1}, typical of Be X-ray transients or wind-fed systems. The minimum observed luminosity is 3x10^{32}(d/10 kpc)^2 ergs s^{-1}. We cannot rule out the possibility that the companion is a red giant. The two known X-ray outbursts of XTE J1829-098 are separated by ~1.3 yr, which may be the orbital period or a multiple of it, with the neutron star in an eccentric orbit. We also studied a late M-giant long-period variable that we found only 9" from the X-ray position. It has a pulsation period of ~1.5 yr, but is not the companion of the X-ray source.Comment: 6 pages, 7 figures. To appear in The Astrophysical Journa

    The Likely Near-Infrared Counterpart to the Anomalous X-Ray Pulsar 1E 1048.1-5937

    Full text link
    We report our discovery of the likely near-infrared counterpart to the anomalous X-ray pulsar (AXP) 1E1048.1-5937, using observations from the 6.5-m Baade (Magellan-I) telescope in Chile. We derived a precise position for the X-ray source using archival data from the Chandra X-Ray Observatory. This position is inconsistent with a position reported earlier from XMM-Newton, but we show that the originally reported XMM-Newton position suffered from attitude reconstruction problems. Only two of the infrared objects in a 17 arcsec x 17 arcsec field containing the target have unusual colors, and one of these has colors consistent with those of the identified counterparts of two other AXPs. The latter object is also the only source detected within the 0.6 arcsec Chandra error circle, and we identify it as the counterpart to 1E1048.1-5937. This is the first AXP counterpart detected in multiple infrared bands, with magnitudes J=21.7(3), H=20.8(3), and K=19.4(3). There is marginal evidence for spectral flattening at longer wavelengths.Comment: 4 pages. Accepted for publication in ApJ Letter

    Multiwavelength Observations of GX 339-4 in 1996. III. Keck Spectroscopy

    Full text link
    As part of our multiwavelength campaign of observations of GX 339-4 in 1996 we present our Keck spectroscopy performed on May 12 UT. At this time, neither the ASM on the RXTE nor BATSE on the CGRO detected the source. The optical emission was still dominated by the accretion disk with V approximately 17 mag. The dominant emission line is H alpha, and for the first time we are able to resolve a double peaked profile. The peak separation Delta v = 370 +/- 40 km/s. Double peaked H alpha emission lines have been seen in the quiescent optical counterparts of many black hole X-ray novae. However, we find that the peak separation is significantly smaller in GX 339-4, implying that the optical emission comes from a larger radius than in the novae. The H alpha emission line may be more akin to the one in Cygnus X-1, where it is very difficult to determine if the line is intrinsically double peaked because absorption and emission lines from the companion star dominate.Comment: Submitted to Astrophysical Journal. 10 pages. 2 figure

    The discovery of 8.9s pulsations from the variable X-ray source 2E0050.1-7247 in the small Magellanic cloud

    Full text link
    During a systematic search for periodic signals in a sample of ROSAT PSPC light curves, we discovered ~ 8.9s X-ray pulsations in 2E0050.1-7247, a variable X-ray source in the Small Magellanic Cloud. The source was detected several times between 1979 and 1993 at luminosity levels ranging from about 5 times 10^{34} erg/s up to 1.4 times 10^{36} erg/s with both the Einstein IPC and ROSAT PSPC. The X-ray energy spectrum is consistent with a power law spectrum which steepens as the source luminosity decreases. We revealed a pronounced Halpha activity from at least two B stars in the X-ray error circles. These results strongly suggest that the X-ray pulsar 2E0050.1-7247 is in a Be-type massive binary.Comment: 13 pages plus 3 postscript figures, AAS style LaTeX file Accepted for publication in the Astrophysical Journal Letter

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
    corecore