16 research outputs found

    Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach

    Get PDF
    Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 μm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation

    In vitro Degradation of Poly-L-co-D, L-lactic Acid Membranes

    No full text
    Poly-L-co-D.L-lactic (PLDLA) is a bioresorbable polymer whose properties have been studied for degradation sensitivity and its application in medicine. In this study, the potential of PLDLA membranes for temporary implantation was evaluated. PLDLA membranes were prepared with the solvent evaporation technique and characterized by differential scanning calorimetry, gel permeation chromatography, thermogravimetric analysis, scanning electron microscopy and traction tests. The glass transition temperature of the membranes was 59 degrees C. Degradation started around 340 degrees C during the second week showing pores and fissures on the broken surface. Evident degradation was observed after 16 weeks. Microscopy showed that before degradation PLDLA membranes presented no pores. PLDLA properties of resistance to traction and elasticity module were maintained until the 8th week, and after the 16th week there was a sharp reduction of these properties due to degradation. PLDLA membranes present excellent potential as temporary implantation given their degradation characteristics.16122122

    Lithograph-Moulded Poly-L-co-D,L Lactide Porous Membranes for Osteoblastic Culture

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Pore size, shape, wall morphology, porosity, and interconnectivity are important characteristics of the scaffolds. Lithography is a manufacturing technique that allows the production of tridimensional scaffolds with a controllable and reproducible inner architecture. The aim of this study was to use lithography to create a poly-L-co-D,L lactide (PLDLA) scaffold with symmetrical pore size and distribution, and to evaluate its biocompatibility with osteoblasts in vitro. Lithographic moulds were used to produce porous PLDLA membranes by a casting procedure. Osteoblasts were removed from calvarial bones and seeded onto porous and smooth PLDLA membranes after which cell viability and adhesion assays, cytochemical analysis and scanning electron microscopy were used to characterize the cells. Cell viability and adhesion assays, cytochemical analysis, and scanning electron microscopy were carried out. Cell viability was similar on porous and smooth PLDLA membranes but higher than on a polystyrene substrate (positive control). Although osteoblasts adhered to the surface of all the materials tested, cell adhesion to lithographed PLDLA was greater than to smooth PLDLA membranes. In conclusion, osteoblasts interacted well with PLDLA membranes, as shown by the viability and adhesion assays and by the enhanced collagen production.171715Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    corecore