1,202 research outputs found

    Neutron scattering study of a quasi-2D spin-1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure

    Full text link
    We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system Piperazinium Hexachlorodicuprate under hydrostatic pressure. The spin gap {\Delta} becomes softened with the increase of the hydrostatic pressure up to P= 9.0 kbar. The observed threefold degenerate triplet excitation at P= 6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P= 9.0 kbar the spin gap is reduced to 0.55 meV from 1.0 meV at ambient pressure.Comment: 4 pages, 5 figure

    A Signal-To-Noise Ratio Comparison fo Ultrasonic Transducers for C-Scan Imaging in Titanium

    Get PDF
    Digital data acquisition and the C-scan imaging of ultrasonic data offer improvements over analog recording techniques, such as strip-chart recording. As a result, peak-detected C-scan imaging is becoming the preferred method for the inspection of large titanium parts such as those found in the aircraft engine industry. The effectiveness of the inspection, however, still depends on the transducer. For this reason, a study of the effect of different transducer parameters on the sensitivity for detection of simulated defects in titanium specimens was conducted. Due to the increased emphasis on C-scan imaging, sensitivity is measured as an image-based signal-to-noise ratio

    Influence of HLA Class II Polymorphism on Predicted Cellular Immunity Against SARS-CoV-2 at the Population and Individual Level.

    Get PDF
    Development of adaptive immunity after COVID-19 and after vaccination against SARS-CoV-2 is predicated on recognition of viral peptides, presented on HLA class II molecules, by CD4+ T-cells. We capitalised on extensive high-resolution HLA data on twenty five human race/ethnic populations to investigate the role of HLA polymorphism on SARS-CoV-2 immunogenicity at the population and individual level. Within populations, we identify wide inter-individual variability in predicted peptide presentation from structural, non-structural and accessory SARS-CoV-2 proteins, according to individual HLA genotype. However, we find similar potential for anti-SARS-CoV-2 cellular immunity at the population level suggesting that HLA polymorphism is unlikely to account for observed disparities in clinical outcomes after COVID-19 among different race/ethnic groups. Our findings provide important insight on the potential role of HLA polymorphism on development of protective immunity after SARS-CoV-2 infection and after vaccination and a firm basis for further experimental studies in this field

    Changes in the Status and Distribution of the Yellow-faced Bumble Bee

    Get PDF
    Bombus vosnesenskii, the distinctively-patterned Yellow-faced Bumble Bee, has undergone a significant and rapid range extension in British Columbia. Known initially from a single record of a few specimens at Osoyoos in 1951, it was put forward in 1996 as a species that warranted a threatened or endangered status because of its severely restricted range in the province. However, since 2000, the species has expanded north in the Okanagan Valley, west to the Similkameen Valley and, especially, has become firmly established in south coastal regions of the province, including Vancouver Island. Population increases in B. vosnesenskii to the south of BC have also been reported. The reasons for the rapid expansion of B. vosnesenskii in BC are unclear. Particularly in lowland southwestern BC, the range expansion might have been enhanced through escapes from colonies kept as pollinators of agricultural crops. The spread of B. vosnesenskii has coincided with the decline of B. occidentalis, so the former may have been introduced or naturally expanded its range at the same time as a niche was becoming vacant

    Rotational Dynamics of Organic Cations in CH3NH3PbI3 Perovskite

    Full text link
    Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance

    The 2011 Mw 7.1 Van (Eastern Turkey) earthquake

    Get PDF
    [1] We use interferometric synthetic aperture radar (InSAR), body wave seismology, satellite imagery, and field observations to constrain the fault parameters of the Mw 7.1 2011 Van (Eastern Turkey) reverse-slip earthquake, in the Turkish-Iranian plateau. Distributed slip models from elastic dislocation modeling of the InSAR surface displacements from ENVISAT and COSMO-SkyMed interferograms indicate up to 9 m of reverse and oblique slip on a pair of en echelon NW 40 °–54 ° dipping fault planes which have surface extensions projecting to just 10 km north of the city of Van. The slip remained buried and is relatively deep, with a centroid depth of 14 km, and the rupture reaching only within 8–9 km of the surface, consistent with the lack of significant ground rupture. The up-dip extension of this modeled WSW striking fault plane coincides with field observations of weak ground deformation seen on the western of the two fault segments and has a dip consistent with that seen at the surface in fault gouge exposed in Quaternary sediments. No significant coseismic slip is found in the upper 8 km of the crust above the main slip patches, except for a small region on the eastern segment potentially resulting from the Mw 5.9 aftershock on the same day. We perform extensive resolution tests on the data to confirm the robustness of the observed slip deficit in the shallow crust. We resolve a steep gradient in displacement at the point where the planes of the two fault segments ends are inferred to abut at depth, possibly exerting some structural control on rupture extent
    corecore