4,457 research outputs found

    Frog foams and natural protein surfactants

    Get PDF
    Foams and surfactants are relatively rare in biology because of their potential to harm cell membranes and other delicate tissues. However, in recent work we have identified and characterized a number of natural surfactant proteins found in the foam nests of tropical frogs and other unusual sources. These proteins, and their associated foams, are relatively stable and bio-compatible, but with intriguing molecular structures that reveal a new class of surfactant activity. Here we review the structures and functional mechanisms of some of these proteins as revealed by experiments involving a range of biophysical and biochemical techniques, with additional mechanistic support coming from more recent site-directed mutagenesis studies

    Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2

    Get PDF
    C60 fullerene is not soluble in water and dispersion usually requires organic solvents, sonication or vigorous mechanical mixing. However, we show here that mixing of pristine C60 in water with natural surfactant proteins latherin and ranaspumin-2 (Rsn-2) at low concentrations yields stable aqueous dispersions with spectroscopic properties similar to those previously obtained by more vigorous methods. Particle sizes are significantly smaller than those achieved by mechanical dispersion alone, and concentrations are compatible with clusters approximating 1:1 protein:C60 stoichiometry. These proteins can also be adsorbed onto more intractable carbon nanotubes. This promises to be a convenient way to interface a range of hydrophobic nanoparticles and related materials with biological macromolecules, with potential to exploit the versatility of recombinant protein engineering in the development of nano-bio interface devices. It also has potential consequences for toxicological aspects of these and similar nanoparticles

    Hydrophobic Ligand Binding by Zn-α_2-glycoprotein, a Soluble Fat-depleting Factor Related to Major Histocompatibility Complex Proteins

    Get PDF
    Zn-alpha2-glycoprotein (ZAG) is a member of the major histocompatibility complex (MHC) class I family of proteins and is identical in amino acid sequence to a tumor-derived lipid-mobilizing factor associated with cachexia in cancer patients. ZAG is present in plasma and other body fluids, and its natural function, like leptin's, probably lies in lipid store homeostasis. X-ray crystallography has revealed an open groove between the helices of ZAG's alpha1 and alpha2 domains, containing an unidentified small ligand in a position similar to that of peptides in MHC proteins (Sanchez, L. M., Chirino, A. J., and Bjorkman, P. J. (1999) Science 283, 1914-1919). Here we show, using serum-derived and bacterial recombinant protein, that ZAG binds the fluorophore-tagged fatty acid 11-(dansylamino)undecanoic acid (DAUDA) and, by competition, natural fatty acids such as arachidonic, linolenic, eicosapentaenoic, and docosahexaenoic acids. Other MHC class I-related proteins (FcRn, HFE, HLA-Cw*0702) showed no such evidence of binding. Fluorescence and isothermal calorimetry analysis showed that ZAG binds DAUDA with Kd in the micromolar range, and differential scanning calorimetry showed that ligand binding increases the thermal stability of the protein. Addition of fatty acids to ZAG alters its intrinsic (tryptophan) fluorescence emission spectrum, providing a strong indication that ligand binds in the expected position close to a cluster of exposed tryptophan side chains in the groove. This study therefore shows that ZAG binds small hydrophobic ligands, that the natural ligand may be a polyunsaturated fatty acid, and provides a fluorescence-based method for investigating ZAG-ligand interactions

    Resonance assignments for latherin, a natural surfactant protein from horse sweat

    Get PDF
    Latherin is an intrinsically surfactant protein of ~23 kDa found in the sweat and saliva of horses. Its function is probably to enhance the translocation of sweat water from the skin to the surface of the pelt for evaporative cooling. Its role in saliva may be to enhance the wetting, softening and maceration of the dry, fibrous food for which equines are adapted. Latherin is unusual in its relatively high content of aliphatic amino acids (~25 % leucines) that might contribute to its surfactant properties. Latherin is related to the palate, lung, and nasal epithelium carcinoma-associated proteins (PLUNCs) of mammals, at least one of which is now known to exhibit similar surfactant activity to latherin. No structures of any PLUNC protein are currently available. 15N,13C-labelled recombinant latherin was produced in Escherichia coli, and essentially all of the resonances were assigned despite the signal overlap due to the preponderance of leucines. The most notable exceptions include a number of residues located in an apparently dynamic loop region between residues 145 and 154. The assignments have been deposited with BMRB accession number 19067

    High-resolution coproecology: Using coprolites to reconstruct the habits and habitats of New Zealand’s extinct upland Moa (Megalapteryx didinus)

    Get PDF
    Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes) were New Zealand's largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave) on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus), and span from at least 6,368±31 until 694±30 ¹⁴C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium) and tree fuchsia (Fuchsia excorticata). The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus) forest to tussock (Chionochloa) grassland). Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates), probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation

    Evaluating the character and preservation of DNA within allophane clusters in buried soils on Holocene tephras, northern New Zealand

    Get PDF
    Clay minerals possess sorptive capacities for organic and inorganic matter, including DNA (Lorenz and Wackernagel, 1994), and hence reduce the utilization and degradation of organic matter or DNA by microorganisms. Buried allophane-rich soils on tephras (volcanic-ash beds) on the North Island, dated using tephrochronology, provide a valuable paleobiological ‘laboratory’ for studying the preservation of ancient DNA (aDNA) (Haile et al., 2007). Allophane comprises Al-rich nanocrystalline spherules ~3.5-5 nm in diameter (Fig. 1) with extremely large surface areas (up to 1000 m2 g-1). Moreover, allophanic soils are strongly associated with organic matter (Parfitt, 2009), and so we hypothesize that allophane also plays an important role for DNA protection within such soils

    Understanding U.S. corporate tax losses

    Full text link
    Recent data on corporate tax losses presents a puzzle this paper attempts to explain: the ratio of losses to positive income was much higher around the recession of 2001 than in earlier recessions, even those of greater severity. Using a comprehensive sample of U.S. corporation tax returns for the period 1982-2005, we explore a variety of potential explanations for this surge in tax losses, taking account of the significant use of executive compensation stock options beginning in the 1990s and recent temporary tax provisions that might have had important effects on taxable income. We find that losses rose because the average rate of return of C corporations fell, rather than because of an increase in the dispersion of returns or an increase in the gap between corporate profits subject to tax and corporate profits as measured by the national income accounts. Our analysis also suggests that the increasing importance of S corporations may help explain the recent experience within the C corporate sector, as S corporations have exhibited a different pattern of losses in recent years. However, we can identify no simple explanation for the differing experience of C and S corporations. Our investigation concludes with some new puzzles: why did rates of return of C corporations fall so much early in the decade and why has the incidence of losses among C and S corporations diverged
    corecore