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Abstract Latherin is an intrinsically surfactant protein of

*23 kDa found in the sweat and saliva of horses. Its

function is probably to enhance the translocation of sweat

water from the skin to the surface of the pelt for evapo-

rative cooling. Its role in saliva may be to enhance the

wetting, softening and maceration of the dry, fibrous food

for which equines are adapted. Latherin is unusual in its

relatively high content of aliphatic amino acids (*25 %

leucines) that might contribute to its surfactant properties.

Latherin is related to the palate, lung, and nasal epithelium

carcinoma-associated proteins (PLUNCs) of mammals, at

least one of which is now known to exhibit similar

surfactant activity to latherin. No structures of any PLUNC

protein are currently available. 15N,13C-labelled recombi-

nant latherin was produced in Escherichia coli, and

essentially all of the resonances were assigned despite the

signal overlap due to the preponderance of leucines. The

most notable exceptions include a number of residues

located in an apparently dynamic loop region between

residues 145 and 154. The assignments have been depos-

ited with BMRB accession number 19067.
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Biological context

Several types of unrelated proteins appear to exhibit intrinsic

surfactant activity as their primary function, which, for the

moment, appears to be the case for latherin. Latherin is one of

the most abundant proteins in the sweat of horses, it is also

found in horse saliva, and is a known allergen to some humans

(McDonald et al. 2009). Latherin’s function is believed to be to

wet the hydrophobic hairs in order to enhance the rate of

translocation of sweat water to the surface of the pelt for

evaporative cooling (McDonald et al. 2009). The hydropho-

bins, a family of surface active proteins produced by filamen-

tous fungi, and RSN-2, a surfactant protein present in the foam

nests of certain species of frogs, have been investigated at the

protein structure level (Linder 2009; Cooper et al. 2005;

Fleming et al. 2009). Latherin exhibits no amino acid sequence

similarities to either of these proteins, but is instead a member

of the palate, lung, and nasal epithelium carcinoma-associated

family of proteins (PLUNCs) found in mammals (McDonald

et al. 2009). Latherin and PLUNCs are, in turn, related to the

larger, two-domain bactericidal/permeability-increasing
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protein (BPI), cholesteryl ester-transfer protein (CETP) and

lipopolysaccharide-binding protein (LBP). Although the

functions of individual PLUNCs have not been confirmed, they

are postulated to have some role within the innate immune

response (Bingle and Craven 2002). The structures of BPI and

CETP are available, but no structure for any member of the

PLUNC family has thus far been reported.

Latherin’s amino acid sequence is unusually rich in ali-

phatic residues, in particular leucine, which contributes

almost 25 % of the residues present, compared to the

SwissProt average for all proteins within that database of

9.67 % (McDonald et al. 2009). This abundance of leucines

is also a feature of one of the PLUNCs from humans that,

like latherin, exhibits strong surfactant activity (Gakhar

et al. 2010). Latherin, therefore, not only presents an

opportunity to investigate the relationship between structure

and function of a unique surfactant protein of mammals, but

potentially also to understand the structure and function of

the PLUNCs as a whole, for which there is currently little or

no structural and direct functional information.

Methods and experiments

A synthetic latherin (sLath) gene based upon the previously

described, cDNA encoding latherin (GenBank AF491288;

UniProt/Swiss-Prot P82615), excluding the presumptive

secretory leader/signal peptide, optimised for expression in

Escherichia coli, was purchased from GeneArt. The sLath

gene was then directionally inserted into the NcoI, BamHI

sites of the pET32a expression vector (Novagen) allowing

for the production of recombinant latherin extended by two

extra amino acids, AM (single letter amino acid code) at

the N-terminus of the wild-type sequence. The ‘sLath/

pET32’ plasmid was transformed into Tuner (DE3) cells

(Novagen). Expression was carried out in Luria–Bertani

broth for non-labeled samples or M9 minimal media

(Sambrook et al. 1989) containing the relevant iso-

tope(s) for the production of single (15N only) or double

(15N, 13C) labeled samples. The protein was purified to

near homogeneity as estimated from SDS-PAGE electro-

phoresis, as described previously (McDonald et al. 2009).

For the purpose of NMR, protein was concentrated to

approximately 600 lM in 50 mM NaCl, 20 mM sodium

phosphate, 1 mM sodium azide, pH 7.5. D2O was added to a

final concentration of 5 % (v/v). All experiments were per-

formed at 310 �K using a Bruker AVANCE 600 MHz spec-

trometer equipped with 5 mm triple-resonance probes and

pulsed-field gradients. The WATERGATE tailored selective

excitation sequence was typically used for water suppression

(Piotto et al. 1992). Proton chemical shifts were referenced
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Fig. 1 The 15N HSQC

spectrum of latherin at 310 K.

The residue specific

assignments are indicated and

the crosspeaks assigned to

sidechain NH2 groups are

linked by horizontal dashed
lines
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relative to the H2O offset frequency and heteronuclear

chemical shifts calculated from the proton reference accord-

ing to the method of Wishart et al. (1995). NMR spectra were

processed using AZARA (Wayne Boucher, Department of

Biochemistry, University of Cambridge, http://www.bio.cam.

ac.uk/azara) and assigned using CCPNmr analysis (Vranken

et al. 2005). Maximum entropy reconstruction (Laue et al.

1986) was used to enhance resolution of the indirect dimen-

sions of three-dimensional experiments.

Sequence-specific resonance assignment of the latherin

backbone was accomplished with the aid of 2D 15N-HSQC

(see Fig. 1), 3D HNCACB, 3D CBCA(CO)NH (Mu-

handiram and Kay 1994), 3D HNCO (Kay et al. 1994), 3D

HNCACO, 3D HBHA(CBCA)NH (Wang et al. 1994) and

HBHA(CBCACO)NH spectra. The majority of aliphatic

sidechain carbon and proton resonances were located by

navigating from the backbone data using 2D 13C-HSQC,

3D (H)C(CO)NH-TOCSY, 3D and 3D H(C)(CO)NH-

TOCSY spectra (Grzesiek and Bax 1992). The high num-

ber of overlapping leucine sidechain resonances were

assigned using 3D methyl-selective experiments (Uhrin

et al. 2000) modified for the removal of CH2 resonances

from the methyl proton-carbon planes (see Fig. 2).

Remaining aliphatic resonances were identified using 3D
13C-edited [1H, 1H]-NOESY spectra. A proportion of aro-

matic sidechain 13C/1H signals (histidine Hd1, tryptophan

Hd1, tyrosine Hd,e and phenylalanine Hd,e) were assigned

using 2D HBCBCGCDHD and 2D HBCBCGCDCEHE

spectra (Yamazaki et al. 1993) and the remainder were

identified from the 13C-edited [1H, 1H]-NOESY spectrum.

Extent of assignments and data deposition

All latherin polypeptide backbone resonances were

assigned, with the exception of the N-terminal residues

A(-2), M(-1), A(0); two isolated residues S59, K82; and

a number of residues located on a dynamic loop region

(G145, N146, S149, L150, N153, A154). A total of

93.51 % of backbone residues were identified, while

assignment of non-labile amino acid sidechain protons is

94.23 % complete. The majority of the missing assign-

ments are those of the residues within the 145–154 residue

dynamic loop region. Despite their high relative abun-

dance within the protein, the experiments nevertheless

allowed full assignment of all leucine residues. A few

resonances displayed chemical shifts outwith the known

distribution of shifts. Sidechain protons in residues (85D,

113R and 180 N) all displayed the effects of ring current

shift due to their close proximity to aromatic residues.

135L Cc has an atypical chemical shift of 31.09 ppm. This

residue is buried within the hydrophobic core of the pro-

tein surrounded by other aliphatic residues, and analysis of

its stereochemical properties in the calculated structure

indicated u, W, v1 and v2 bond angles in favourable

regions. The atypical chemical shift in 135L therefore

remains to be explained.

The 1H, 13C and 15N chemical shift assignments have

been deposited with the BioMagResBank database (http://

www.bmrb.wisc.edu), accession number 19067.
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A BFig. 2 The methyl region of the
13C, 1H correlation spectra of

latherin illustrating the

increased resolution of the

leucine methyl crosspeaks

possible with a the me-HCCH-

TOCSY experiment as

compared to b the conventional
13C-HSQC
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Piotto M, Saudek V, Sklenář V (1992) Gradient-tailored excitation for

single-quantum NMR spectroscopy of aqueous solutions. J Bio-

mol NMR 2(6):661–665. doi:10.1007/bf02192855

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a

laboratory manual, vol 1. Cold Spring Harbor Laboratory, Laurel

Hollow, NY

Uhrin D, Uhrinova S, Leadbeater C, Nairn J, Price NC, Barlow PN

(2000) 3D HCCH3-TOCSY for resonance assignment of methyl-

containing side chains in C-13-labeled proteins. J Magn Reson

142(2):288–293

Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M,

Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN

data model for NMR spectroscopy: development of a software

pipeline. Proteins 59:687–696

Wang AC, Lodi PJ, Qin J, Vuister GW, Gronenborn AM, Clore GM

(1994) An efficient triple-resonance experiment for proton-

directed sequential backbone assignment of medium-sized

proteins. J Magn Reson, Ser B 105(2):196–198

Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E,

Markley JL, Sykes BD (1995) 1H,13C and 15N chemical shift

referencing in biomolecular NMR. J Biomol NMR 6(2):

135–140. doi:10.1007/bf00211777

Yamazaki T, Forman-Kay JD, Kay LE (1993) Two-dimensional

NMR experiments for correlating carbon-13.beta. and pro-

ton.delta./.epsilon. chemical shifts of aromatic residues in 13C-

labeled proteins via scalar couplings. J Am Chem Soc

115(23):11054–11055. doi:10.1021/ja00076a099

S. J. Vance et al.

123

http://dx.doi.org/10.1098/rspb.2008.1939
http://dx.doi.org/10.1371/journal.pone.0009098
http://dx.doi.org/10.1016/j.cocis.2009.04.001
http://dx.doi.org/10.1007/bf02192855
http://dx.doi.org/10.1007/bf00211777
http://dx.doi.org/10.1021/ja00076a099

	Resonance assignments for latherin, a natural surfactant protein from horse sweat
	Abstract
	Biological context
	Methods and experiments
	Extent of assignments and data deposition
	Acknowledgments
	References


