1,124 research outputs found
Neural spike train synchronization indices: Definitions, interpretations, and applications
A comparison of previously defined spike train synchronization indices is undertaken within a stochastic point process framework. The second-order cumulant density (covariance density) is shown to be common to all the indices. Simulation studies were used to investigate the sampling variability of a single index based on the second-order cumulant. The simulations used a paired motoneurone model and a paired regular spiking cortical neurone model. The sampling variability of spike trains generated under identical conditions from the paired motoneurone model varied from 50% to 160% of the estimated value. On theoretical grounds, and on the basis of simulated data a rate dependence is present in all synchronization indices. The application of coherence and pooled coherence estimates to the issue of synchronization indices is considered. This alternative frequency domain approach allows an arbitrary number of spike train pairs to be evaluated for statistically significant differences, and combined into a single population measure. The pooled coherence framework allows pooled time domain measures to be derived, application of this to the simulated data is illustrated. Data from the cortical neurone model is generated over a wide range of firing rates (1-250 spikes/s). The pooled coherence framework correctly characterizes the sampling variability as not significant over this wide operating range. The broader applicability of this approach to multielectrode array data is briefly discussed
Using cascading Bloom filters to improve the memory usage for de Brujin graphs
De Brujin graphs are widely used in bioinformatics for processing
next-generation sequencing data. Due to a very large size of NGS datasets, it
is essential to represent de Bruijn graphs compactly, and several approaches to
this problem have been proposed recently. In this work, we show how to reduce
the memory required by the algorithm of [3] that represents de Brujin graphs
using Bloom filters. Our method requires 30% to 40% less memory with respect to
the method of [3], with insignificant impact to construction time. At the same
time, our experiments showed a better query time compared to [3]. This is, to
our knowledge, the best practical representation for de Bruijn graphs.Comment: 12 pages, submitte
Компонентный состав фразеологических единиц, мотивирующих слова (на материале немецкого языка)
Статья из специализированного выпуска научного журнала "Культура народов Причерноморья", материалы которого объединены общей темой "Язык и Мир" и посвящены общим вопросам Языкознания и приурочены к 80-летию со дня рождения Николая Александровича Рудякова.Стаття із спеціалізованого випуску наукового журналу "Культура народов Причерноморья", матеріали якого поєднані загальною темою "Мова і Світ" і присвячені загальним питанням мовознавства і приурочені до 80-річчя з дня народження Миколи Олександровича Рудякова
Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming
In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
Low Energy Chiral Lagrangian in Curved Space-Time from the Spectral Quark Model
We analyze the recently proposed Spectral Quark Model in the light of Chiral
Perturbation Theory in curved space-time. In particular, we calculate the
chiral coefficients , as well as the coefficients ,
, and , appearing when the model is coupled to gravity. The
analysis is carried for the SU(3) case. We analyze the pattern of chiral
symmetry breaking as well as elaborate on the fulfillment of anomalies.
Matching the model results to resonance meson exchange yields the relation
between the masses of the scalar, tensor and vector mesons,
. Finally, the
large- limit suggests the dual relations in the vector and scalar
channels, and .Comment: 18 pages, no figure
Extragalactic Relativistic Jets and Nuclear Regions in Galaxies
Past years have brought an increasingly wider recognition of the ubiquity of
relativistic outflows (jets) in galactic nuclei, which has turned jets into an
effective tool for investigating the physics of nuclear regions in galaxies. A
brief summary is given here of recent results from studies of jets and nuclear
regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic
Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B.
Leibundgut (Springer: Heidelberg 2006
Yukawa couplings in intersecting D-brane models
We compute the Yukawa couplings among chiral fields in toroidal Type II
compactifications with wrapping D6-branes intersecting at angles. Those models
can yield realistic standard model spectrum living at the intersections. The
Yukawa couplings depend both on the Kahler and open string moduli but not on
the complex structure. They arise from worldsheet instanton corrections and are
found to be given by products of complex Jacobi theta functions with
characteristics. The Yukawa couplings for a particular intersecting brane
configuration yielding the chiral spectrum of the MSSM are computed as an
example. We also show how our methods can be extended to compute Yukawa
couplings on certain classes of elliptically fibered CY manifolds which are
mirror to complex cones over del Pezzo surfaces. We find that the Yukawa
couplings in intersecting D6-brane models have a mathematical interpretation in
the context of homological mirror symmetry. In particular, the computation of
such Yukawa couplings is related to the construction of Fukaya's category in a
generic symplectic manifold.Comment: 47 pages, using JHEP3.cls, 11 figures. Typos and other minor
corrections. References adde
Supersymmetry Without Prejudice
We begin an exploration of the physics associated with the general
CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY
breaking parameters in this scenario are chosen so as to satisfy all existing
experimental and theoretical constraints assuming that the WIMP is a
conventional thermal relic, ie, the lightest neutralino. We scan this parameter
space twice using both flat and log priors for the soft SUSY breaking mass
parameters and compare the results which yield similar conclusions. Detailed
constraints from both LEP and the Tevatron searches play a particularly
important role in obtaining our final model samples. We find that the pMSSM
leads to a much broader set of predictions for the properties of the SUSY
partners as well as for a number of experimental observables than those found
in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of
models can easily lead to atypical expectations for SUSY signals at the LHC.Comment: 61 pages, 24 figs. Refs., figs, and text added, typos fixed; This
version has reduced/bitmapped figs. For a version with better figs please go
to http://www.slac.stanford.edu/~rizz
Compact jets as probes for sub-parsec scale regions in AGN
Compact relativistic jets in active galactic nuclei offer an effective tool
for investigating the physics of nuclear regions in galaxies. The emission
properties, dynamics, and evolution of jets in AGN are closely connected to the
characteristics of the central supermassive black hole, accretion disk and
broad-line region in active galaxies. Recent results from studies of the
nuclear regions in several active galaxies with prominent outflows are reviewed
in this contribution.Comment: AASLaTeX, 5 pages, 4 figures. Accepted in Astrophysics and Space
Scienc
- …
