395 research outputs found

    A simple and low-power optical limiter for multi-GHz pulse trains

    Get PDF
    We study the limiting-amplification capability of a saturated Semiconductor Optical Amplifier (SOA) followed by an optical band-pass filter. We experimentally demonstrate that this simple optical circuit can be effectively exploited to realize a low-power optical limiter for amplitude-modulated pulse trains at multi-GHz repetition rate. We report very large amplitude-modulation-reduction factors for the case of 20 and 40 GHz pulse trains that are super-imposed with modulating frequencies ranging from 100kHz to several GHz. (C) 2007 Optical Society of America

    A simple and low-power optical limiter for multi-GHz pulse trains

    Get PDF
    We study the limiting-amplification capability of a saturated Semiconductor Optical Amplifier (SOA) followed by an optical band-pass filter. We experimentally demonstrate that this simple optical circuit can be effectively exploited to realize a low-power optical limiter for amplitudemodulated pulse trains at multi-GHz repetition rate. We report very large amplitude-modulation-reduction factors for the case of 20 and 40 GHz pulse trains that are super-imposed with modulating frequencies ranging from 100 kHz to several GHz

    All-optical self-routing of 40 Gb/s DPSK packets

    Get PDF
    We demonstrate a self-routing all-optical circuit for switching 40 Gb/s DPSK packets. In our scheme, an all-optical header processor feeds a set-reset flip-flop that drives a coherent wavelength converter. We report an overall limited power penalty

    A 40 Gb/s InP-monolithically integrated DPSK-demolulator enhanced by cross-gain-compensation in an SOA

    Get PDF
    We fabricated and experimentally tested a novel monolithically integrated Indium Phosphide optical circuit for differential phase-shift keying demodulation, which is robust to noise degradations of the received signal. The circuit consists of a one-bit-delay interferometer that demodulates the incoming signal and a semiconductor optical amplifier where the constructive and destructive demodulated outputs synchronously counter-propagate experiencing a reshaping effect. The novel optical circuit has been fabricated for 40 Gb/s signals, and the amplitude signal restoration is demonstrated by comparing the obtained output eye diagrams with those of a commercial fiber-based demodulator. We find a net improvement in the signal to noise ratio when the circuit is fed with a noisy input signal

    Photonic integrated reconfigurable linear processors as neural network accelerators

    Get PDF
    Reconfigurable linear optical processors can be used to perform linear transformations and are instrumental in effectively computing matrix–vector multiplications required in each neural network layer. In this paper, we characterize and compare two thermally tuned photonic integrated processors realized in silicon-on-insulator and silicon nitride platforms suited for extracting feature maps in convolutional neural networks. The reduction in bit resolution when crossing the processor is mainly due to optical losses, in the range 2.3–3.3 for the silicon-on-insulator chip and in the range 1.3–2.4 for the silicon nitride chip. However, the lower extinction ratio of Mach–Zehnder elements in the latter platform limits their expressivity (i.e., the capacity to implement any transformation) to 75%, compared to 97% of the former. Finally, the silicon-on-insulator processor outperforms the silicon nitride one in terms of footprint and energy efficiency

    Integrated optical frequency comb for 5G NR Xhauls

    Get PDF
    : We experimentally demonstrate the use of optical frequency combs (OFCs), generated by a photonic integrated circuit (PIC), in a flexible optical distribution network based on fiber-optics and free-space optics (FSOs) links, aimed at the fifth generation of mobile network (5G) Xhauls. The Indium Phosphide (InP) monolithically integrated OFC is based on cascaded optical modulators and is broadly tunable in terms of operating wavelength and frequency spacing. Particularly, our approach relies on applying the PIC in a centralized radio access network (C-RAN) architecture, with the purpose of optically generating two low-phase noise mm-waves signals for simultaneously enabling a 12.5-km of single-mode fiber (SMF) fronthaul and a 12.5-km SMF midhaul, followed by a 10-m long FSO fronthaul link. Moreover, the demonstrator contemplates two 10-m reach 5G wireless access networks operating in the 26 GHz band, i.e. over the frequency range 2 (FR2) from the 5G NR standard. The proposed integrated OFC-based 5G system performance is in accordance to the 3rd Generation Partnership Project (3GPP) Release 15 requirements, achieving a total wireless throughput of 900 Mbit/s

    Chirp management in silicon-graphene electro absorption modulators

    Get PDF
    We study the frequency chirp properties of graphene-on-silicon electro-absorption modulators (EAMs). By experimentally measuring the chirp of a 100 \ub5m long single layer graphene EAM, we show that the optoelectronic properties of graphene induce a large positive linear chirp on the optical signal generated by the modulator, giving rise to a maximum shift of the instantaneous frequency up to 1.8 GHz. We exploit this peculiar feature for chromatic-dispersion compensation in fiber optic transmission thanks to the pulse temporal lensing effect. In particular, we show dispersion compensation in a 10Gb/s transmission experiment on standard single mode fiber with temporal focusing distance (0-dB optical-signal-to-noise ratio penalty) of 60 km, and also demonstrate 100 km transmission with a bit error rate largely lower than the conventional Reed-Solomon forward error correction threshold of 10 123

    a compact silicon coherent receiver without waveguide crossing

    Get PDF
    A monolithically integrated silicon coherent receiver based on a novel scheme with a crossing-free 90 ∘^{\circ} hybrid optical coupler and two balanced germanium photodetectors is reported. The integrated receiver is compact (footprint is 0.8×1.0 mm20.8\times 1.0\ \hbox{mm}^{2} ), and it is demonstrated by working with single-polarization 56-Gb/s quadrature phase-shift keying (QPSK) and 80-Gb/s 16-quadrature amplitude modulation (16-QAM) signals. In particular, QPSK transmission that is back-to-back at 28 Gbaud shows a bit-error rate (BER) below 10−410^{-4} for an optical signal-to-noise ratio (OSNR) lower than 17 dB, whereas 16-QAM at 20 Gbaud shows a BER not better than 3∗10−23^{\ast}10^{-2} because of the nonideal behavior of the device. Reasons for the performance limitations are discussed
    • …
    corecore