43 research outputs found

    Selective inhibition of N-linked glycosylation impairs receptor tyrosine kinase processing

    Get PDF
    Global inhibition of N-linked glycosylation broadly reduces glycan occupancy on glycoproteins, but identifying how this inhibition functionally impacts specific glycoproteins is challenging. This limits our understanding of pathogenesis in the congenital disorders of glycosylation (CDG). We used selective exo-enzymatic labeling of cells deficient in the two catalytic subunits of oligosaccharyltransferase - STT3A and STT3B - to monitor the presence and glycosylation status of cell surface glycoproteins. We show reduced abundance of two canonical tyrosine receptor kinases - the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) - at the cell surface in STT3A-null cells, due to decreased N-linked glycan site occupancy and proteolytic processing in combination with increased endoplasmic reticulum localization. Providing cDNA for Golgi-resident proprotein convertase subtilisin/kexin type 5a (PCSK5a) and furin cDNA to wild-type and mutant cells produced under-glycosylated forms of PCSK5a, but not furin, in cells lacking STT3A. Reduced glycosylation of PCSK5a in STT3A-null cells or cells treated with the oligosaccharyltransferase inhibitor NGI-1 corresponded with failure to rescue receptor processing, implying that alterations in the glycosylation of this convertase have functional consequences. Collectively, our findings show that STT3A-dependent inhibition of N-linked glycosylation on receptor tyrosine kinases and their convertases combines to impair receptor processing and surface localization. These results provide new insight into CDG pathogenesis and highlight how the surface abundance of some glycoproteins can be dually impacted by abnormal glycosylation

    Stress and Radiation-Induced Activation of Multiple Intracellular Signaling Pathways

    Get PDF
    Exposure of cells to a variety of stresses induces compensatory activations of multiple intracellular signaling pathways. These activations can play critical roles in controlling cell survival and repopulation effects in a stress-specific and cell type-dependent manner. Some stress-induced signaling pathways are those normally activated by mitogens such as the EGFR/RAS/PI3K-MAPK pathway. Other pathways activated by stresses such as ionizing radiation include those downstream of death receptors, including pro-caspases and the transcription factor NFKB. This review will attempt to describe some of the complex network of signals induced by ionizing radiation and other cellular stresses in animal cells, with particular attention to signaling by growth factor and death receptors. This includes radiation-induced signaling via the EGFR and IGFI-R to the PI3K, MAPK, JNK, and p38 pathways as well as FAS-R and TNF-R signaling to pro-caspases and NFKB. The roles of autocrine ligands in the responses of cells and bystander cells to radiation and cellular stresses will also be discussed. Based on the data currently available, it appears that radiation can simultaneously activate multiple signaling pathways in cells. Reactive oxygen and nitrogen species may play an important role in this process by inhibiting protein tyrosine phosphatase activity. The ability of radiation to activate signaling pathways may depend on the expression of growth factor receptors, autocrine factors, RAS mutation, and PTEN expression. In other words, just because pathway X is activated by radiation in one cell type does not mean that pathway X will be activated in a different cell type. Radiation-induced signaling through growth factor receptors such as the EGFR may provide radioprotective signals through multiple downstream pathways. In some cell types, enhanced basal signaling by proto-oncogenes such as RAS may provide a radioprotective signal. In many cell types, this may be through PI3K, in others potentially by NFKB or MAPK. Receptor signaling is often dependent on autocrine factors, and synthesis of autocrine factors will have an impact on the amount of radiation-induced pathway activity. For example, cells expressing TGFalpha and HB-EGF will generate protection primarily through EGFR. Heregulin and neuregulins will generate protective signals through ERBB4/ERBB3. The impact on radiation-induced signaling of other autocrine and paracrine ligands such as TGFbeta and interleukin 6 is likely to be as complicated as described above for the ERBB receptors.Fil: Dent, Paul. Virginia Commonwealth University; Estados UnidosFil: Yacoub, Adly. Virginia Commonwealth University; Estados UnidosFil: Contessa, Joseph. Virginia Commonwealth University; Estados UnidosFil: Caron, Ruben Walter. Virginia Commonwealth University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Amorino, Geroge. Virginia Commonwealth University; Estados UnidosFil: Valerie, Kristoffer. Virginia Commonwealth University; Estados UnidosFil: Hagan, Michael P.. Virginia Commonwealth University; Estados UnidosFil: Grant, Steven. Virginia Commonwealth University; Estados UnidosFil: Schmidt Ullrich, Rupert. Virginia Commonwealth University; Estados Unido

    Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation

    Full text link
    EGFR and ErbB2 are two members of the ErbB family of receptor Tyr Kinases identified as therapeutic targets for treating carcinomas. Breast carcinoma cells express different complements and variable proportions of ErbB receptor Tyr kinases, which activate unique and redundant signaling cascades that are essential for cell survival. Previously it was shown that a COOH-terminal truncation mutant of the EGFR (EGFR-CD533) blocks EGFR dependent signals and radiosensitizes breast carcinoma cells. In this study the effects of EGFR-CD533 and an analogous truncation mutant of ErbB2 (ErbB2-CD572) on ErbB receptor family dimerization and signaling are further investigated. Using adenoviral vectors in breast carcinoma cell lines with variable ErbB expression profiles, we demonstrate different effects for each deletion mutant. EGFR-CD533 blocks ligand stimulation of EGFR, ErbB2, and ErbB4, but is associated with a compensatory Tyr kinase activity resulting in phosphorylation of ErbB3. In contrast, ErbB2-CD572 produces a weaker, non-specific pattern of ErbB receptor family inhibition, based upon the ErbB expression pattern of the cell type. Investigation of the compensatory Tyr kinase activity associated with EGFR-CD533 expression identified an ErbB3/c-Src signaling pathway that regulates expression of anti-apoptotic Bcl family proteins. This signaling is active in the T47D cell line, which inherently over-express ErbB3, absent in MDA-MB231 cells, which have low ErbB3 expression levels, and is restored in a MDA-MB231 cell line engineered to over-express ErbB3. Furthermore we demonstrate that ErbB3/c-Src signaling is radio-protective, and that its elimination through pharmacologic inhibition of c-Src enhances radiation-induced apoptosis. In summary, these studies identify a novel ErbB3/c-Src survival signal and point to ErbB3 expression levels as an important variable in therapeutic targeting of ErbB receptors in breast carcinoma cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44234/1/10549_2005_Article_9023.pd

    Oligosaccharyltransferase Inhibition Induces Senescence in RTK-Driven Tumor Cells

    Get PDF
    Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that inhibit new targets in this biosynthetic pathway, we initiated a cell-based high throughput screen and lead compound optimization campaign that delivered a cell permeable inhibitor (NGI-1). NGI-1 targets the oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. In non-small cell lung cancer cells NGI-1 blocks cell surface localization and signaling of the EGFR glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or FGFR) for survival. In these cell lines OST inhibition causes cell cycle arrest accompanied by induction of p21, autofluorescence, and changes in cell morphology; all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor tyrosine kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells

    Revoking the Privilege: Targeting HER2 in the Central Nervous System: Fig. 1.

    No full text

    Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity.

    No full text
    Asparagine-linked glycosylation is an endoplasmic reticulum co- and post-translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization

    Oligosaccharyltransferase inhibition reduces receptor tyrosine kinase activation and enhances glioma radiosensitivity

    Get PDF
    Purpose: Parallel signaling reduces the effects of receptor tyrosine kinase (RTK)–targeted therapies in glioma. We hypothesized that inhibition of protein N-linked glycosylation, an endoplasmic reticulum co- and posttranslational modification crucial for RTK maturation and activation, could provide a new therapeutic approach for glioma radiosensitization. Experimental Design: We investigated the effects of a small-molecule inhibitor of the oligosaccharyltransferase (NGI-1) on EGFR family receptors, MET, PDGFR, and FGFR1. The influence of glycosylation state on tumor cell radiosensitivity, chemotherapy-induced cell toxicity, DNA damage, and cell-cycle arrest were determined and correlated with glioma cell receptor expression profiles. The effects of NGI-1 on xenograft tumor growth were tested using a nanoparticle formulation validated by in vivo molecular imaging. A mechanistic role for RTK signaling was evaluated through the expression of a glycosylation-independent CD8-EGFR chimera. Results: NGI-1 reduced glycosylation, protein levels, and activation of most RTKs. NGI-1 also enhanced the radiosensitivity and cytotoxic effects of chemotherapy in those glioma cells with elevated ErbB family activation, but not in cells without high levels of RTK activation. NGI-1 radiosensitization was associated with increases in both DNA damage and G 1 cell-cycle arrest. Combined treatment of glioma xenografts with fractionated radiotherapy and NGI-1 significantly reduced tumor growth compared with controls. Expression of the CD8-EGFR eliminated the effects of NGI-1 on G 1 arrest, DNA damage, and cellular radiosensitivity, identifying RTK inhibition as the principal mechanism for the NGI-1 effect. Conclusions: This study suggests that oligosaccharyltransferase inhibition with NGI-1 is a novel approach to radio-sensitize malignant gliomas with enhanced RTK signaling.Fil: Barontini, Marta Beatriz. University of Yale; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López Sambrooks, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina. University of Yale; Estados UnidosFil: Quijano, Amanda. University of Yale; Estados UnidosFil: Mark Saltzman, W.. University of Yale; Estados UnidosFil: Contessa, Joseph. University of Yale. School of Medicine; Estados Unido

    Neuregulin signaling is a mechanism of therapeutic resistance in head and neck squamous cell carcinoma

    No full text
    EGFR signaling confers resistance to radiotherapy and is a validated target in head and neck squamous cell carcinoma (HNSCC). The inhibition of EGFR in combination with radiotherapy improves local control and overall survival in these patients; however, therapeutic resistance limits the efficacy of this approach. We therefore sought to identify cellular mechanisms that cause resistance to EGFR inhibition and radiotherapy in HNSCC. Though clonal isolation of carcinoma cells exposed to increasing concentrations of cetuximab, we found that resistant cells upregulate prosur-vival ErbB3 and AKT signaling. Using EFM-19 cells and confirmatory analysis of protein levels, we demonstrate that cetuximab resistance is characterized by enhanced neuregulin expression identifying a novel adaptive mechanism of therapeutic resistance. Inhibition of this autocrine loop with CDX-3379 (an ErbB3 specific antibody) was sufficient to block ErbB3/AKT signaling in cetuximab resistant cells. The combination of CDX-3379 and cetuximab reduced proliferation and survival after radiotherapy in several HNSCC cell lines. These in vitro findings were confirmed in xenograft tumor growth experiments including an approach using growth factor–supplemented Matrigel. In vivo, the delivery of EGFR and ErbB3 antibodies significantly reduced tumor growth in cetuximab-resistant FaDu and CAL27 xenografts. In summary, this work demonstrates that autocrine NRG ligand secretion is a mechanism for therapeutic resistance to cetuximab and radiotherapy. This cross-resistance to both therapeutic modalities identifies NRG as an actionable therapeutic target for improving treatment regimens in HNSCC.Fil: Baro, Marta. University of Yale. School of Medicine; Estados UnidosFil: López Sambrooks, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Burtness, Barbara A.. University of Yale. School of Medicine; Estados UnidosFil: Lemmon, Mark A.. University of Yale. School of Medicine; Estados UnidosFil: Contessa, Joseph N.. University of Yale. School of Medicine; Estados Unido

    CDKN2A Copy Number Loss Is an Independent Prognostic Factor in HPV-Negative Head and Neck Squamous Cell Carcinoma

    No full text
    BackgroundHPV infection is associated with high p16 expression and good prognosis in head and neck squamous cell carcinomas (HNSCCs). Analysis of CDKN2A, the gene encoding p16, may further elucidate the association between p16 expression and prognosis. We sought to determine whether CDKN2A copy number loss was associated with poor survival in HPV-negative HNSCCs.MethodsThe Cancer Genome Atlas HNSCC clinical and genomic data were obtained and integrated. Patients <80 years old with a primary tumor in the oral cavity, oropharynx, hypopharynx, or larynx were included. Stratifying by copy number loss status, CDKN2A mRNA and p16 protein expression levels were examined and overall survival (OS) and disease-free survival (DFS) were evaluated.Results401 patients with HPV-negative HNSCC were identified. 146 patients demonstrated CDKN2A copy number loss. The CDKN2A copy number loss group expressed significantly lower levels of CDKN2A mRNA and p16 protein than did the non-copy number loss group. Median OS for patients with and without CDKN2A copy number loss was 16.5 and 46.6 months, respectively (p = 0.007). Median DFS for both groups was 11.6 and 19.2 months, respectively (p = 0.03). In both univariate and multivariable analyses, stage IV designation, receipt of chemotherapy and CDKN2A copy number loss were predictive of OS.ConclusionCDKN2A copy number loss predicted poor survival independently of other patient and treatment factors and may be a clinically useful prognostic factor
    corecore