40 research outputs found

    Electrochemical and nanostructural characterization of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films as coatings for neural electrodes

    Get PDF
    Poly(3,4-ethylenedioxythiophene) (PEDOT), a well-characterized conducting polymer, has been applied for coating metal neural electrodes to improve their stimulating or recording performance. The coated electrodes possess advantages in better neuron attachment, lower impedance, and larger capacitance compared to the bare metal substrate due to the biocompatibility and porous surface of the polymer. However, the PEDOT-coated electrodes have frequently reported issues associated with mechanical instability, such as cracking and delamination. Solving this problem is crucial for stimulating electrodes, whereas a massive film is unnecessary for recording purposes. Moreover, the thickness control for the latter has rarely been investigated. In this work, we systematically studied and characterized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with cyclic voltammetry and atomic force microscopy (AFM) to evaluate the electropolymerization of PEDOT:PSS from the basis and analyze the surface morphology for a range of deposition times. The polymerization potential was obtained, and the deposition charge density was optimized for recording neural electrodes. In addition, high-resolution AFM height and phase images reveal the heterogeneity of the polymer surface. The modified electrode was also tested for its electrochemical performance in a small potential window with both a standard electrochemical cell setup and stainless steel microscrews. The results showed that despite a shift of potential (0.42 V) due to the change of setup, the electrode functions well in the capacitive region without triggering redox reactions

    Double Electrode Experiments Reveal the Processes Occurring at PEDOT-Coated Neural Electrode Arrays

    Get PDF
    Neural electrodes have recently been developed with surface modifications of conductive polymers, in particular poly­(3,4-ethylenedioxythiophene) (PEDOT), and extensively studied for their roles in recording and stimulation, aiming to improve their biocompatibility. In this work, the implications for the design of practical neural sensors are clarified, and systematic procedures for their preparation are reported. In particular, this study introduces the use of in vitro double electrode experiments to mimic the responses of neural electrodes with a focus on signal-recording electrodes modified with PEDOT. Specifically, potential steps on one unmodified electrode in an array are used to identify the responses for PEDOT doped with different anions and compared with that of a bare platinum (Pt) electrode. The response is shown to be related to the rearrangement of ions in solution near the detector electrode resulting from the potential step, with a current transient seen at the detector electrode. A rapid response for PEDOT doped with chloride (ca. 0.04 s) ions was observed and attributed to the fast movement of chloride ions in and out of the polymer film. In contrast, PEDOT doped with poly­(styrenesulfonate) (PSS) responds much slower (ca. 2.2 s), and the essential immobility of polyanion constrains the direction of current flow

    Hierarchical Self-Assembly of Water-Soluble Fullerene Derivatives into Supramolecular Hydrogels

    Get PDF
    Controlling the self-assembly of nanoparticle building blocks into macroscale soft matter structures is an open question and of fundamental importance to fields as diverse as nanomedicine and next-generation energy storage. Within the vast library of nanoparticles, the fullerenes—a family of quasi-spherical carbon allotropes—are not explored beyond the most common, C60. Herein, a facile one-pot method is demonstrated for functionalizing fullerenes of different sizes (C60, C70, C84, and C90–92), yielding derivatives that self-assemble in aqueous solution into supramolecular hydrogels with distinct hierarchical structures. It is shown that the mechanical properties of these resultant structures vary drastically depending on the starting material. This work opens new avenues in the search for control of macroscale soft matter structures through tuning of nanoscale building blocks.</p

    Hierarchical Self-Assembly of Water-Soluble Fullerene Derivatives into Supramolecular Hydrogels

    Get PDF
    Controlling the self-assembly of nanoparticle building blocks into macroscale soft matter structures is an open question and of fundamental importance to fields as diverse as nanomedicine and next-generation energy storage. Within the vast library of nanoparticles, the fullerenes—a family of quasi-spherical carbon allotropes—are not explored beyond the most common, C60. Herein, a facile one-pot method is demonstrated for functionalizing fullerenes of different sizes (C60, C70, C84, and C90–92), yielding derivatives that self-assemble in aqueous solution into supramolecular hydrogels with distinct hierarchical structures. It is shown that the mechanical properties of these resultant structures vary drastically depending on the starting material. This work opens new avenues in the search for control of macroscale soft matter structures through tuning of nanoscale building blocks.</p

    Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    Get PDF
    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies

    Nanoscale rheology: dynamic mechanical analysis over a broad and continuous frequency range using photothermal actuation atomic force microscopy

    Get PDF
    Polymeric materials are widely used in industries ranging from automotive to biomedical. Their mechanical properties play a crucial role in their application and function and arise from the nanoscale structures and interactions of their constitutive polymer molecules. Polymeric materials behave viscoelastically, i.e., their mechanical responses depend on the time scale of the measurements; quantifying these time-dependent rheological properties at the nanoscale is relevant to develop, for example, accurate models and simulations of those materials, which are needed for advanced industrial applications. In this paper, an atomic force microscopy (AFM) method based on the photothermal actuation of an AFM cantilever is developed to quantify the nanoscale loss tangent, storage modulus, and loss modulus of polymeric materials. The method is then validated on styrene–butadiene rubber (SBR), demonstrating the method’s ability to quantify nanoscale viscoelasticity over a continuous frequency range up to 5 orders of magnitude (0.2–20,200 Hz). Furthermore, this method is combined with AFM viscoelastic mapping obtained with amplitude modulation–frequency modulation (AM–FM) AFM, enabling the extension of viscoelastic quantification over an even broader frequency range and demonstrating that the novel technique synergizes with preexisting AFM techniques for quantitative measurement of viscoelastic properties. The method presented here introduces a way to characterize the viscoelasticity of polymeric materials and soft and biological matter in general at the nanoscale for any application

    Cell-wall fucosylation in Arabidopsis influences control of leaf water loss and alters stomatal development and mechanical properties

    Get PDF
    The Arabidopsis sensitive-to-freezing8 (sfr8) mutant exhibits reduced cell-wall (CW) fucose levels and compromised freezing tolerance. To examine whether CW fucosylation affects the response to desiccation also, we tested the effect of leaf excision in sfr8 and the allelic mutant mur1-1. Leaf water loss was strikingly higher than wild type in these, but not other, fucosylation mutants. We hypothesised that reduced fucosylation in guard cell (GC) walls might limit stomatal closure through altering mechanical properties. Multifrequency atomic force microscopy (AFM) measurements revealed a reduced elastic modulus (E’), representing reduced stiffness, in sfr8 GC walls. Interestingly, however, we discovered a compensatory mechanism whereby a concomitant reduction in the storage modulus (E’’) maintained a wild type viscoelastic time response (tau) in sfr8. Stomata in intact leaf discs of sfr8 responded normally to a closure stimulus, ABA, suggesting the time response may relate more to closure properties than stiffness does. sfr8 stomatal pore complexes were larger than wild type and GCs lacked a fully developed cuticular ledge, both potential contributors to the greater leaf water loss in sfr8. We present data that indicate fucosylation-dependent dimerisation of the CW pectic domain rhamnogalacturonan-II may be essential for normal cuticular ledge development and leaf water retention

    Biophysical characterization of DNA origami nanostructures reveals inaccessibility to intercalation binding sites

    Get PDF
    Intercalation of drug molecules into synthetic DNA nanostructures formed through self-assembled origami has been postulated as a valuable future method for targeted drug delivery. This is due to the excellent biocompatibility of synthetic DNA nanostructures, and high potential for flexible programmability including facile drug release into or near to target cells. Such favourable properties may enable high initial loading and efficient release for a predictable number of drug molecules per nanostructure carrier, important for efficient delivery of safe and effective drug doses to minimise non-specific release away from target cells. However, basic questions remain as to how intercalation-mediated loading depends on the DNA carrier structure. Here we use the interaction of dyes YOYO-1 and acridine orange with a tightly-packed 2D DNA origami tile as a simple model system to investigate intercalation-mediated loading. We employed multiple biophysical techniques including single-molecule fluorescence microscopy, atomic force microscopy, gel electrophoresis and controllable damage using low temperature plasma on synthetic DNA origami samples. Our results indicate that not all potential DNA binding sites are accessible for dye intercalation, which has implications for future DNA nanostructures designed for targeted drug delivery

    Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy.

    Get PDF
    金沢大学理工研究域 数物科学系We have used high-speed atomic force microscopy to study the dynamics of bacteriorhodopsin (bR) molecules at the free interface of the crystalline phase that occurs naturally in purple membrane. Our results reveal temporal fluctuations at the crystal edges arising from the association and dissociation of bR molecules, most predominantly pre-formed trimers. Analysis of the dissociation kinetics yields an estimate of the inter-trimer single-bond energy of -0.9 kcal/mol. Rotational motion of individual bound trimers indicates that the inter-trimer bond involves W10-W12 tryptophan residues. © 2009 Elsevier Inc. All rights reserved.最終稿を登録可能
    corecore