137 research outputs found

    Differences in GlycA and lipoprotein particle parameters may help distinguish acute kawasaki disease from other febrile illnesses in children.

    Get PDF
    BackgroundGlycosylation patterns of serum proteins, such as α1-acid glycoprotein, are modified during an acute phase reaction. The response of acute Kawasaki disease (KD) patients to IVIG treatment has been linked to sialic acid levels on native IgG, suggesting that protein glycosylation patterns vary during the immune response in acute KD. Additionally, the distribution and function of lipoprotein particles are altered during inflammation. Therefore, the aim of this study was to explore the potential for GlycA, a marker of protein glycosylation, and the lipoprotein particle profile to distinguish pediatric patients with acute KD from those with other febrile illnesses.MethodsNuclear magnetic resonance was used to quantify GlycA and lipoprotein particle classes and subclasses in pediatric subjects with acute KD (n = 75), post-treatment subacute (n = 36) and convalescent (n = 63) KD, as well as febrile controls (n = 48), and age-similar healthy controls (n = 48).ResultsGlycA was elevated in acute KD subjects compared to febrile controls with bacterial or viral infections, IVIG-treated subacute and convalescent KD subjects, and healthy children (P <0.0001). Acute KD subjects had increased total and small low density lipoprotein particle numbers (LDL-P) (P <0.0001) and decreased total high density lipoprotein particle number (HDL-P) (P <0.0001) compared to febrile controls. Consequently, the ratio of LDL-P to HDL-P was higher in acute KD subjects than all groups tested (P <0.0001). While GlycA, CRP, erythrocyte sedimentation rate, LDL-P and LDL-P/HDL-P ratio were able to distinguish patients with KD from those with other febrile illnesses (AUC = 0.789-0.884), the combinations of GlycA and LDL-P (AUC = 0.909) or GlycA and the LDL-P/HDL-P ratio (AUC = 0.910) were best at discerning KD in patients 6-10 days after illness onset.ConclusionsHigh levels of GlycA confirm enhanced protein glycosylation as part of the acute phase response in KD patients. When combined with common laboratory tests and clinical characteristics, GlycA and NMR-measured lipoprotein particle parameters may be useful for distinguishing acute KD from bacterial or viral illnesses in pediatric patients

    Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer

    Get PDF
    AbstractThe physiological function initially attributed to the oligosaccharide moieties or glycans on inflammatory glycoproteins was to improve protein stability. However, it is now clear that glycans play a prominent role in glycoprotein structure and function and in some cases contribute to disease states. In fact, glycan processing contributes to pathogenicity not only in autoimmune disorders but also in atherosclerotic cardiovascular disease, diabetes and malignancy. While most clinical laboratory tests measure circulating levels of inflammatory proteins, newly developed diagnostic and prognostic tests are harvesting the information that can be gleaned by measuring the amount or structure of the attached glycans, which may be unique to individuals as well as various diseases. As such, these newer glycan-based tests may provide future means for more personalized approaches to patient stratification and improved patient care.Here we will discuss recent progress in high-throughput laboratory methods for glycomics (i.e. the study of glycan structures) and glycoprotein quantification by methods such as mass spectrometry and nuclear magnetic resonance spectroscopy. We will also review the clinical utility of glycoprotein and glycan measurements in the prediction of common low-grade inflammatory disorders including cardiovascular disease, diabetes and cancer, as well as for monitoring autoimmune disease activity

    Lipoprotein insulin resistance score and branched-chain amino acids increase after adrenalectomy for unilateral aldosterone-producing adenoma: a preliminary study

    Get PDF
    Background and aims Primary aldosteronism (PA) due to unilateral aldosterone-producing adenoma (APA) is preferentially treated by unilateral adrenalectomy (ADX), but little is known about the changes in lipid and glucose metabolism that may occur after ADX. Methods We studied 19 non-diabetic patients who did not use lipid-lowering drugs with PA due to APA before and 6 months after unilateral ADX. Fasting plasma lipids, lipoprotein subfractions, branched-chain amino acids (BCAA), and GlycA, a pro-inflammatory glycoprotein biomarker, were measured by nuclear magnetic resonance (NMR) spectroscopy. The Lipoprotein Insulin Resistance (LP-IR) score, which is based on six lipoprotein variables, was calculated. Results In all patients, hyperaldosteronism was resolved after ADX. Body mass index and fasting plasma glucose were unchanged, but HbA1c increased (p = 0.002). Plasma triglycerides, large triglyceride-rich lipoprotein (TRL) cholesterol, and large TRL particles were increased (p < 0.01), resulting in an increase in TRL size (p = 0.027). High-density lipoprotein size was decreased (p = 0.015). LP-IR scores (p = 0.001) and total BCAA (p = 0.017) were increased, but GlycA remained unaltered. Conclusions Based on increases in LP-IR scores and BCAA, which each have been shown to predict new onset type 2 diabetes mellitus independent of conventional risk factors in the general population, this preliminary study suggests that diabetes risk is not improved but may even be increased after ADX for APA despite remission of PA

    Alcohol Consumption, High-Density Lipoprotein Particles and Subspecies, and Risk of Cardiovascular Disease:Findings from the PREVEND Prospective Study

    Get PDF
    The associations of HDL particle (HDL-P) and subspecies concentrations with alcohol consumption are unclear. We aimed to evaluate the interplay between alcohol consumption, HDL parameters and cardiovascular disease (CVD) risk. In the PREVEND study of 5151 participants (mean age, 53 years; 47.5% males), self-reported alcohol consumption and HDL-P and subspecies (small, medium, and large) by nuclear magnetic resonance spectroscopy were assessed. Hazard ratios (HRs) with 95% CIs for first CVD events were estimated. In multivariable linear regression analyses, increasing alcohol consumption increased HDL-C, HDL-P, large and medium HDL, HDL size, and HDL subspecies (H3P, H4P, H6 and H7) in a dose-dependent manner. During a median follow-up of 8.3 years, 323 first CVD events were recorded. Compared with abstainers, the multivariable adjusted HRs (95% CIs) of CVD for occasional to light, moderate, and heavy alcohol consumers were 0.72 (0.55-0.94), 0.74 (0.54-1.02), and 0.65 (0.38-1.09), respectively. These associations remained consistent on additional adjustment for each HDL parameter. For CVD, only HDL-C was associated with a statistically significant decreased risk of CVD in a fully adjusted analysis (HR 0.84, 95% CI 0.72-0.97 per 1 SD increment). For coronary heart disease, HDL-C, HDL-P, medium HDL, HDL size, and H4P showed inverse associations, whereas HDL-C and HDL size modestly increased stroke risk. Except for H6P, alcohol consumption did not modify the associations between HDL parameters and CVD risk. The addition of HDL-C, HDL size, or H4P to a CVD risk prediction model containing established risk factors improved risk discrimination. Increasing alcohol consumption is associated with increased HDL-C, HDL-P, large and medium HDL, HDL size, and some HDL subspecies. Associations of alcohol consumption with CVD are largely independent of HDL parameters. The associations of HDL parameters with incident CVD are generally not attenuated or modified by alcohol consumption.</p

    Plasma Citrate Levels Are Associated with an Increased Risk of Cardiovascular Mortality in Patients with Type 2 Diabetes (Zodiac-64)

    Get PDF
    Circulating citrate may represent a proxy of mitochondrial dysfunction which plays a role in the development of vascular complications in type 2 diabetes (T2D). Here, we determined the associations between plasma citrate levels and cardiovascular (CV) mortality in T2D patients. In this prospective cohort study, 601 patients were included who participated in the Zwolle Outpatient Diabetes project Integrating Available Care (ZODIAC). Plasma citrate levels were measured by nuclear magnetic resonance spectroscopy. Cox proportional hazards regression models were used to evaluate the associations between plasma citrate and the risk of CV mortality. Over a median follow-up of 11.4 years, 119 (19.8%) of the 601 patients died from a CV cause. In multivariable Cox proportional hazards regression models, adjusting for conventional risk factors, plasma citrate was associated with an increased risk of CV mortality (the hazard ratio (HR) per 1-SD increment was 1.19 (95%CI: 1.00–1.40), p = 0.048). This association was prominent in males (n = 49 with CV mortality) (HR 1.52 (95%CI: 1.14–2.03), p = 0.005), but not in females (n = 70 with CV mortality) (HR 1.11 (95%CI: 0.90–1.37), p = 0.319) (age-adjusted Pinteraction = 0.044). In conclusion, higher plasma citrate levels are associated with an increased risk of CV mortality in patients with established T2D. Future studies are warranted to unravel the potential role of citrate-related pathways in the pathogenesis of T2D-related vascular complications

    Nuclear Magnetic Resonance-Measured Ionized Magnesium Is Inversely Associated with Type 2 Diabetes in the Insulin Resistance Atherosclerosis Study

    Get PDF
    The aims were to optimize a nuclear magnetic resonance (NMR)-based assay for quantifying ionized or free magnesium and investigate its association with type 2 diabetes (T2D). A high-throughput, ionized magnesium assay was optimized and evaluated. Plasma magnesium was quantified, and associations with T2D were ascertained in Insulin Resistance Atherosclerosis Study (IRAS) participants. Coefficients of variation for the ionized magnesium assay ranged from 0.7–1.5% for intra-assay and 4.2–4.7% for inter-assay precision. In IRAS (n = 1342), ionized magnesium was significantly lower in subjects with prediabetes and T2D than in normoglycemic subjects, and lower in participants with T2D than those with prediabetes (p < 0.0001). Cross-sectional regression analyses revealed that magnesium was associated with T2D at baseline in models adjusted for multiple clinical risk factors (p = 0.032). This association appeared to be modified by sex, in such a way that the associations were present in women (OR = 0.54 (95% CI 0.37–0.79), p = 0.0015) and not in men (OR = 0.98 (95% CI 0.71–1.35), p = 0.90). Longitudinal regression analyses revealed an inverse association between magnesium and future T2D in the total population (p = 0.035) that was attenuated by LP-IR (p = 0.22). No interactions were detected between magnesium and age, race, BMI, glucose, insulin, triglycerides, or LPIR for the prospective association with future T2D. However, a significant interaction between magnesium and sex was present, now with a trend for an association in men (OR = 0.75 (95% CI 0.55–1.02), p = 0.065 and absence of an association in women (OR = 1.01 (0.76–1.33), p = 0.97). Conclusions: lower ionized magnesium, as measured by an NMR-based assay optimized for accuracy and precision, was associated cross-sectionally with T2D at baseline and longitudinally with incident T2D in IRAS

    A metabolomic index based on lipoprotein subfractions and branched chain amino acids is associated with incident hypertension

    Get PDF
    OBJECTIVE: The present study aims to evaluate the performance of the Diabetes Risk Index (DRI), a metabolomic index based on lipoprotein particles and branched chain amino acids, on the incidence of newly developed hypertension in a large community dwelling cohort. METHODS: The DRI was calculated by combining 6 lipoprotein parameters [sizes of very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL), concentrations of large VLDL, small LDL, and large HDL particles], and the concentrations of valine and leucine. DRI scores were estimated in 4169 participants from the PREVEND prospective cohort. Cox proportional hazards regression was used to evaluate the association of DRI scores with incident hypertension. RESULTS: During a median follow-up of 8.6 years, 924 new hypertension cases were ascertained. In analyses adjusted for age and sex, there was a significant association between DRI and incident hypertension with a hazard ratio (HR) per 1 SD increase of 1.45 (95% CI 1.36,1.54; p < 0.001). After additional adjustment for traditional risk factors, the HR remained significant (HRadj 1.21, 95% CI 1.10, 1.33, p <0.001). Likewise, subjects in the top quartile of DRI presented with a higher risk of hypertension (HRadj 1.64, 95% CI 1.28, 2.10, p <0.001). Furthermore, the net reclassification improvement assessment improved after the addition of DRI to a traditional risk model (p <0.001), allowing proper reclassification of 34% of the participants. CONCLUSION: Higher DRI scores were associated with an increased risk of incident hypertension. Such association was independent of traditional clinical risk factors for hypertension

    Ketone Bodies Are Mildly Elevated in Subjects with Type 2 Diabetes Mellitus and Are Inversely Associated with Insulin Resistance as Measured by the Lipoprotein Insulin Resistance Index

    Get PDF
    Background: Quantifying mildly elevated ketone bodies is clinically and pathophysiologically relevant, especially in the context of disease states as well as for monitoring of various diets and exercise regimens. As an alternative assay for measuring ketone bodies in the clinical laboratory, a nuclear magnetic resonance (NMR) spectroscopy-based test was developed for quantification of beta-hydroxybutyrate (beta-HB), acetoacetate (AcAc) and acetone. Methods: The ketone body assay was evaluated for precision, linearity and stability and method comparisons were performed. In addition, plasma ketone bodies were measured in the Insulin Resistance Atherosclerosis Study (IRAS, n = 1198; 373 type 2 diabetes mellitus (T2DM) subjects). Results: beta-HB and AcAc quantified using NMR and mass spectrometry and acetone quantified using NMR and gas chromatography/mass spectrometry were highly correlated (R-2 = 0.996, 0.994, and 0.994 for beta-HB, AcAc, acetone, respectively). Coefficients of variation (%CVs) for intra- and inter-assay precision ranged from 1.3% to 9.3%, 3.1% to 7.7%, and 3.8% to 9.1%, for beta-HB, AcAc and acetone, respectively. In the IRAS, ketone bodies were elevated in subjects with T2DM versus non-diabetic individuals (p = 0.011 t

    Higher Free Triiodothyronine Is Associated With Higher HDL Particle Concentration and Smaller HDL Particle Size

    Get PDF
    Context Thyroid function status has effects on the development of atherosclerotic cardiovascular disease by affecting lipid metabolism, but associations of high-density lipoprotein (HDL) particle concentrations and subfractions with thyroid hormone levels within the reference range remain elusive. Objective The aim of the present study was to determine the associations of free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) levels with HDL particle characteristics in euthyroid individuals. Methods This cross-sectional study on the associations of thyroid hormones with HDL particle concentrations, HDL subfractions, and HDL particle size included 5844 euthyroid individuals (FT3, FT4, and TSH levels within the reference range and no medication use affecting thyroid function), participating in the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) study. HDL particles and subfractions were measured by nuclear magnetic resonance using an optimized version of the NMR LipoProfile Test (LP4). Results In multivariable linear regression analyses, FT3 was positively associated with total HDL particle concentration (std.beta = 0.14; P < 0.001) and with small (std.beta = 0.13; P < 0.001) and medium-sized HDL particles (std.beta = 0.05; P = 0.001). Conversely, FT3 was inversely associated with large HDL particles (std.beta = -0.07; P < 0.001) and with HDL particle size (std.beta = -0.08; P < 0.001). Such associations with FT4 or reciprocally with TSH were less pronounced or nonsignificant. Conclusion In euthyroid individuals, higher FT3 is cross-sectionally associated with higher total HDL particle concentration and with lower HDL particle size. These associations may be relevant to better understand the role of HDL in thyroid function-associated atherosclerotic cardiovascular disease

    Mahalanobis distance, a novel statistical proxy of homeostasis loss is longitudinally associated with risk of type 2 diabetes

    Get PDF
    Background: The potential role of individual plasma biomarkers in the pathogenesis of type 2 diabetes (T2D) has been broadly studied, but the impact of biomarkers interaction remains underexplored. Recently, the Mahalanobis distance (MD) of plasma biomarkers has been proposed as a proxy of physiological dysregulation. Here we aimed to investigate whether the MD calculated from circulating biomarkers is prospectively associated with development of T2D. Methods: We calculated the MD of the Principal Components (PCs) integrating the information of 32 circulating biomarkers (comprising inflammation, glycemic, lipid, microbiome and one-carbon metabolism) measured in 6247 participants of the PREVEND study without T2D at baseline. Cox proportional-hazards regression analyses were performed to study the association of MD with T2D development. Findings: After a median follow-up of 7·3 years, 312 subjects developed T2D. The overall MD (mean (SD)) was higher in subjects who developed T2D compared to those who did not: 35·65 (26·67) and 30.75 (27·57), respectively (P = 0·002). The highest hazard ratio (HR) was obtained using the MD calculated from the first 31 PCs (per 1 log-unit increment) (1·72 (95% CI 1·42,2·07), P < 0·001). Such associations remained after the adjustment for age, sex, plasma glucose, parental history of T2D, lipids, blood pressure medication, and BMI (HRadj 1·37 (95% CI 1·11,1·70), P = 0·004). Interpretation: Our results are in line with the premise that MD represents an estimate of homeostasis loss. This study suggests that MD is able to provide information about physiological dysregulation also in the pathogenesis of T2D. Funding: The Dutch Kidney Foundation (Grant E.033)
    • …
    corecore