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The physiological function initially attributed to the oligosaccharide moieties or glycans on inflammatory glyco-
proteinswas to improve protein stability. However, it is now clear that glycans play a prominent role in glycopro-
tein structure and function and in some cases contribute to disease states. In fact, glycan processing contributes to
pathogenicity not only in autoimmune disorders but also in atherosclerotic cardiovascular disease, diabetes and
malignancy. While most clinical laboratory tests measure circulating levels of inflammatory proteins, newly de-
veloped diagnostic and prognostic tests are harvesting the information that can be gleaned by measuring the
amount or structure of the attached glycans, which may be unique to individuals as well as various diseases.
As such, these newer glycan-based tests may provide future means for more personalized approaches to patient
stratification and improved patient care.
Here we will discuss recent progress in high-throughput laboratory methods for glycomics (i.e. the study of gly-
can structures) and glycoprotein quantification by methods such as mass spectrometry and nuclear magnetic
resonance spectroscopy. We will also review the clinical utility of glycoprotein and glycan measurements in
the prediction of common low-grade inflammatory disorders including cardiovascular disease, diabetes and can-
cer, as well as for monitoring autoimmune disease activity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Given the imperfections in the armamentarium of conventional bio-
markers for diagnosis, prognosis, or risk prediction and disease preven-
tion at the individual patient level, there is an ongoing effort using novel
high-precision laboratory techniques to discover new biomarkers that
will increase the sensitivity and specificity above current clinical tests
[1–4]. Glycoproteins play key roles in inflammatory and pathological
processes [5–9]. Thus, it is not surprising that investigation of the clini-
cal utility of assays that measure inflammatory glycoproteins has re-
ceived much attention [10–13]. Besides the clinical information that
can be gleaned by quantifying circulating levels of glycoproteins, it is
now clear thatmeasurements based on the glycan structures of circulat-
ing proteins represent another avenue for improving diagnosis, progno-
sis and risk prediction of common inflammatory disorders [4,7,13–19].
Here we will briefly review the biochemistry and metabolism of glyco-
proteins, provide insight into the glycoprotein assays that are currently
Table 1
Human inflammatory glycoproteins modified during an acute phase response.

Category Positive acute phase proteins Molecular weight
(kDa)

Binding or transport
proteins

α1-Acid glycoprotein
(AGP/orosomucoid)

41–43

Haptoglobin 100
Ceruloplasmin 151
Mac-2 (or galectin-3) binding protein 85–97

Antiproteases α1-Antitrypsin 52
α2-Macroglobulin 179
α1-Antichymotrypsin 68
Kallistatin 58

Complement system C2 83
C3 185
C5 190
C1 esterase inhibitor 105

Coagulation system Fibrinogen α, β, γ 340

Plasminogen 92
Vitronectin 140
α2-Antiplasmin 70

Prothrombin 72
Plasminogen activator inhibitor-1
(PAI-1)

43

Tissue plasminogen activator (tPA) 72
Miscellaneous Fibronectin 220–440

Lipoprotein phospholipase A2
(Lp-PLA2)

45

C-reactive protein (CRP), pentamer 115–120

Serum amyloid A (SAA) 13.5

Category Negative acute phase proteins Molecular weight (kDa) G

Miscellaneous Transferrin 76–81 3
Transthyretin 55 1
α2-HS-glycoprotein (fetuin) 58 2
α-Fetoprotein (AFP) 70 1
Thyroxine binding protein 54 5
Coagulation Factor XII 80 2

a Confirmation of contribution to the acute phase response and the number of sites that are
www.uniprot.org/. The UniProt Consortium. UniProt: a hub for protein information Nucleic Ac
cosylation see reference [4].

b Reference for adult (age 20–60 years) concentrations: C.A. Burtis, E.R. Ashwood, and D.E. B
Philadelphia, WB Saunders, 2006, Chapter 56 pg. 2251–2302. If no standardized assay is availa

c Das T. et al., Biochem J. 2003 Jul. 15; 373(2): 345–55.
available for clinical use and describe newer high-throughput technolo-
gies that are being employed for identifying new glycan-based bio-
markers that will add to the current armamentarium and are expected
to improve patient care.

2. Glycoprotein biochemistry and rationale for measuring glycopro-
teins and glycans

Protein glycosylation is the enzyme-mediated post-translational
process responsible for the attachment of glycan chains either to the ni-
trogen of an asparagine residue (N-linkage) or the oxygen of a serine or
threonine residue (O-linkage) [8,20]. While most O-linked glycopro-
teins remain intracellular or are secreted and become part of the extra-
cellular matrix, most of the abundant proteins in the circulation are N-
linked glycoproteins. N-linked glycosylation is initiated in the endoplas-
mic reticulum and the oligosaccharide chains are further modified via a
set of glycosyltransferases in the Golgi apparatus to form the basic
Glycosylation sites
(#)

UniProt
numbera

Adult concentrations in serumb

5 P02763 0.5–1.2 mg/mL

4 P00738 0.3–3.0 mg/mL
6 P00450 0.2–0.6 mg/mL
7 Q08380 1.4–16.1 μg/mL
3 P01009 0.9–2.0 mg/mL
8 P01023 1.3–3.0 mg/mL
6 P01001 1.5–3.5 mg/mL
4 P29622 10 μg/mL
8 P06681 0.02–0.4 mg/mL
3 P01024 0.9–1.8 mg/mL
4 P01031 0.02–0.4 mg/mL
7 N-, 8 O-linked P05155 0.21–0.39 mg/mL
5 N-, 2 O-linked P02671, -75,

-79
1.5–4.0 mg/mL

1 N-, 2 O-linked P00747 plasma 120–200 μg/mL
3 P04004 plasma 110–140 μg/mL
4 P08697 70 μg/mL in plasma, 47.6 μg/mL in

serum
3 P00734 Detection range 0.031–32 μg/mL
3 P05121 Plasma 5–40 ng/mL

3 N-, 1 O-linked P00750 1–18 ng/mL
7 N-, 3 O-linked P02751 0.3 mg/mL
2 P13093 0.5–100 ng/mL

1c P02741 hsCRP b1.0 μg/mL; ≥3.0 μg/mL risk for
CVD

0 P0DJ18 0.41–300 ng/mL; SAA is not
glycosylated

lycosylation sites (#) UNIPROT numbera Adult concentrations in serum

N-, 1 O-linked P02787 2.1–3.6 mg/mL
P02766 0.2–0.4 mg/mL

N-, 4 O-linked P02765 0.21–0.45 mg/mL
P02771 b15 ng/mL
P05543 0.011–0.021 mg/mL

N-, 7 O-linked P00748 Plasma 0.1–100 ng/mL

glycosylated was obtained using the UniProtKB/Swiss-Prot database. http://
ids Res. 43: D204–D212 (2015). For a more comprehensive review of plasma protein gly-

runs. eds., Tietz Textbook of Clinical Chemistry andMolecular Diagnostics (Fourth edition)
ble, a normal detection range was reported from a commercially available ELISA assay.

uniprotkb:P02787
uniprotkb:P02766
uniprotkb:P02765
uniprotkb:P02771
uniprotkb:P05543
uniprotkb:P00748
uniprotkb:P01001
uniprotkb:P29622
uniprotkb:P06681
uniprotkb:P01024
uniprotkb:P01031
uniprotkb:P05155
uniprotkb:P02671
uniprotkb:P00747
uniprotkb:P04004
uniprotkb:P08697
uniprotkb:P00734
uniprotkb:P05121
uniprotkb:P00750
uniprotkb:P02751
uniprotkb:P13093
uniprotkb:P02741
uniprotkb:P0DJ18
uniprotkb:P02787
uniprotkb:P02766
uniprotkb:P02765
uniprotkb:P02771
uniprotkb:P05543
uniprotkb:P00748
http://www.uniprot.org
http://www.uniprot.org


Fig. 1. Examples of N-linked glycans showing mannose-rich as well as bi-, tri-, and tetra-antennary glycan structures. Two N-acetyl glucosamine (GlcNAc) residues occur at the site of
protein attachment. Additional GlcNAc residues can be attached via β(1–2), β(1–4) or β(1–6) linkages to mannose residues at the sites of glycan branching. Sialic acid and fucose
residues are added or removed during inflammatory processes.
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glycan structure. The sequence of sugar residues and the overall struc-
ture of the oligosaccharide chain depend on the cell type-specific glyco-
syltransferases and glycosidases and the availability of the various sugar
nucleotide donors [20]. Given the vast number of known glycosyltrans-
ferases, glycosidases andmonosaccharides, and the diversity of linkages
that can occur, the molecular structures of protein-bound glycans are
Table 2
Glycoprotein tests for risk assessment, diagnosis or prognosis of various diseases.

Disease Serum test Glycoprotein(s) or sugar residue Assay ty

Cardiometabolic
disorders

hsCRP High-sensitivity C-reactive protein Nephelo

Fibrinogen Fibrinogen ELISA o

Total
serum
sialic acid

N-acetylneuraminic acid Colorim
chroma
fluoresc

GlycA N-acetylglucosamine NMR
LecT-Hepa Lectins that bind to glycans on AGP Lectin b

Mac-2 BP,
Fuc-Hpt

Mac-2 binding protein Fucosylated haptoglobin ELISA a

Autoimmune
diseases

CRP Conventional C-reactive protein Nephelo
ESR Fibrinogen and immunoglobulins Sedime

cells pe
MBDA VCAM-1, EGF, VEGF-A, IL-6, TNF-R1, MMP-1,

MMP-3, YKL-40, Leptin, Resistin, SAA and CRP
Lumine

GlycA N-acetylglucosamine NMR
Cancers AFP α-Fetoprotein ECLIA

PSA,
Pro2PSA

Prostate specific antigen ECLIA

CA125 MUC16 or cancer antigen 125 ECLIA

HE4 WFDC2 or human epididymis protein 4 ELISA

CA15-3 Sialylated oligosaccharide on MUC1 CMSI
CA27-29 MUC1 protein levels CMSI
CA19-9 Serum Lewis antigen (SLea) RIA
CEA Cell adhesion glycoproteins ECLIA

OVA1 β2-Microglobulin, CA125II, apoA-I, prealbumin,
transferrin

Immun

ROMA Combined HE4, CA125II ELISA a
GlycA N-acetylglucosamine NMR

More extensive lists of glycoprotein tests and biomarkers can be found in references [12,19]. AC
CMSI, chemiluminescent microparticle 2-step sandwich immunoassay; hsCRP, high sensitivity
noassay; EGF, epidermal growth factor; ELISA, enzyme linked immunosorbent assay; ESR, eryt
proteinase 3; NASH, non-alcoholic steatohepatitis; NMR, nuclear magnetic resonance; RA, rhe
factor receptor type I; VCAM-1, vascular cell adhesion molecule 1; VEGF-A, vascular endothelia
remarkably diverse, even before the glycoproteins have been released
into the circulatory system [21].

Plasma levels of the majority of circulating glycoproteins rise (posi-
tive acute phase proteins) or fall (negative acute phase proteins) during
the acute phase response, the systemic reaction to the presence of infec-
tion, tissue damage, cancer andpregnancy [5,16,22,23]. Table 1 provides
pe Clinical application

metry Risk for CVD or all-cause mortality and prognosis for
recurrent events in patients with coronary disease or ACS

r activity assay Detecting blood clotting and bleeding disorders; has been
shown to have associations with CVD and all-cause
mortality

etric, enzymatic,
tographic and
ence assays

Risk assessment for CVD or all-cause mortality

Risk assessment for CVD or all-cause mortality
inding Detecting liver fibrosis in patients with chronic Hepatitis B

or C
nd Lectin-antibody ELISA Distinguish NASH from fatty liver

metry Infection, tissue injury, and inflammatory disorders.
ntation rate of red blood
r hour

Assessment of disease activity in RA

x based assays Assessment of disease activity in RA

Assessment of disease activity in RA
Diagnosis, staging, detecting recurrence and monitoring of
therapy for liver cancer
Screening, discriminating prostate cancer from benign
disease
Monitoring therapy, detecting recurrence of ovarian
cancer
Monitoring therapy, detecting recurrence of ovarian
cancer
Monitoring therapy for breast cancer
Monitoring therapy for breast cancer
Monitoring therapy for pancreatic and ovarian cancer
Monitoring therapy, detecting recurrence of multiple
cancers

oassays Prediction of metastatic ovarian cancer

nd ECLIA Prediction of metastatic ovarian cancer
Predicting risk of colorectal cancer

S, acute coronary syndrome; AGP, α1-acid glycoprotein; CEA, Carcinoembryonic antigen;
C-reactive protein; CVD, cardiovascular disease; ECLIA, electrochemiluminescence immu-
hrocyte sedimentation rate; MMP-1, matrix metalloproteinase 1; MMP-3, matrix metallo-
umatoid arthritis; RIA, radioimmunoassay; SAA, serum amyloid A; TNFRI, tumor necrosis
l growth factor A.



180 M.A. Connelly et al. / Clinica Chimica Acta 459 (2016) 177–186
examples of both positive and negative acute phase glycoproteins and
illustrates the diverse roles they play during an inflammatory reaction.
Inflammatory glycoproteins are predominantly synthesized and secret-
ed by hepatocytes but can be produced by activated macrophages and
neutrophils in the periphery [5,15,17]. While IL-6 is the predominant
stimulator of overall glycoprotein production during acute and chronic
inflammation, other cytokines such as IL-1β, TNFα, interferon γ, TGFβ
and IL-8, stimulate the production of subsets of glycoproteins. Because
inflammation is the basis for many autoimmune and chronic low
grade inflammatory diseases such as cardiovascular disease (CVD),
type 2 diabetes (T2DM) and cancer, glycoproteins play an integral part
in the physiology and pathophysiology of these diseases. As a result,
many current clinical tests utilize circulating levels of inflammatory gly-
coproteins (e.g. haptoglobin and α-fetoprotein) for diagnostic or prog-
nostic purposes.

Besides changes in circulating protein levels, the glycan structures of
acute phase glycoproteins are dynamically altered by glycosidases, gly-
cosyltransferases and sialyltransferases in the circulation [14,15]. Post-
translationalmodifications in glycan structures during inflammation in-
clude changes in the number of antennary branches, increased
sialylation and fucosylation and decreased galactosylation [14–16].
While the glycans of some proteins remain rich in mannose residues,
the carbohydrate structures of many N-linked inflammatory glycopro-
teins become bi-, tri- and tetra-antennary after inflammation-mediated
processing [14–16] (Fig. 1). These branched glycans are rich in N-
acetylglucosamine (GlcNAc), N-acetylgalactosamine, sialic acid and fu-
cose residues in a myriad of different arrangements, contributing to
the potential diversity of glycan structures [14–17,20,21] (Fig. 1). There-
fore, there are both intracellular and extracellular post-translational
processes that contribute to the overall diversity of glycan structures
that can occur in any one individual. These are also many factors that
can influence glycan complexity including: 1) cell-type specific expres-
sion of glycosyltransferases, glycosidases, 2) availability of the various
monosaccharides, 3) age, 4) gender, 5) epigenetic background, 5) envi-
ronment (e.g. health, diet, smoking and alcohol consumption) and 6)
disease processes (e.g. autoimmune diseases, cancer as well as low-
grade inflammatory diseases such as CVD and T2DM) [21,24].

Although it was once thought that the only purpose for having car-
bohydrate side-chains on glycoproteins was to aid in protein stability,
it has become increasingly clear that glycans play a much more active
role in glycoprotein structure and function. Glycans participate in
many key biological processes including ligand binding, transport and
clearance, cell adhesion, receptor binding and activation and signal
transduction [4,7–9,14,15,20]. Inflammation-induced glycan modifica-
tions affect protein folding by masking sites for protease cleavage,
preventing proteolysis and extending the circulating half-life of serum
proteins [4,8,9,20,25]. Moreover, they alter a protein's tertiary or
quarternary structure, redirecting it to different cell membrane recep-
tors and changing its downstream cellular effects [4,8,9,15,20]. These
functional alterations may lead to modulation of the immune response
or, if modified aberrantly, can lead to autoimmune disease. For example,
glycans are a fundamental part of self- versus non-self-recognition and
alterations in immunoglobulin G (IgG) glycosylation have been report-
ed in various immune diseases including rheumatoid arthritis (RA) [8,
20]. Therefore, glycans are often casual in the disease process andmon-
itoring these changes may provide pertinent information regarding dis-
ease stages. In effect, both desirable and undesirable changes in glycan
structuremay be exploited for risk assessment, patient stratification, di-
agnostic or prognostic purposes [4,13,18,24,26,27].

Alpha1-acid glycoprotein (AGP), also known as orosomucoid, pro-
vides a good example of how changes in glycan structure can affect gly-
coprotein function and be exploited for diagnostic or prognostic
purposes [15]. Normal circulating concentrations of AGP range from
0.6–1.2 mg/mL, and its plasma level is increased up to 50-fold during
an acute inflammatory response, making AGP the second most abun-
dant circulating protein (1–3% of plasma protein) [4,15]. AGP contains
5 sites for N-linked glycosylation and is therefore very high in carbohy-
drate content (N40%) [4,15]. During an acute phase response, the
lengths of the oligosaccharide chains on AGP increase and are modified
from bi- to tri- and tetra-antennary branches, accompanied by an in-
crease in fucosylation and sialylation [4,15]. Both the immunomodula-
tory and the binding properties of AGP are strongly dependent on its
carbohydrate composition; therefore, inflammation-mediated alter-
ations in glycan structure have a profound effect on AGP function [15].

Increased fucosylation of AGP has been reported in some diseases,
allowing measurement of AGP fucosylation to be useful for diagnostic
purposes. For example, fucosylated AGP was significantly higher in pa-
tients with liver cirrhosis compared to steatosis of the liver, non-alco-
holic steatohepatitis (NASH) and fibrosis due to chronic viral-induced
hepatitis, suggesting that this glycanmarkermay be useful for detecting
liver cirrhosis [15]. Interestingly, AGP glycan modification appears to
occur in some inflammatory diseases, but not others. For example, in-
creased AGP glycan branching has been observed in patients with asth-
ma and RA but not in patients with ulcerative colitis [15]. Moreover,
glycan structure modifications on AGP led to reduced collagenase-3 ac-
tivity and collagen binding, which could exacerbate the disease process
in RA patients [15]. This may be true for many other circulating inflam-
matory glycoproteins (Table 1). Given the diversity in the numbers of
glycoproteins in biological fluids as well as the unique changes that
may occur in somediseases and not others, there is likely awealth of in-
formation yet to bemined fromglycoproteins aswell as their glycans for
clinical use [24].

3. Assays of glycoproteins in biological fluids and development of
high-throughput assays for glycan measurement

Currently, concentrations of individual inflammatory glycoproteins
are determined using immunochemical methods such as enzyme-
linked immunosorbent assays (ELISAs), electrochemiluminescence im-
munoassay (ECLIA), luminex based assays, radioimmunoassays (RIA)
and nephelometric assays that quantify the amount of protein present
in biological samples (Table 2). Such assays are employed to determine
protein levels of many of the inflammatory glycoproteins including
AGP, haptoglobin,α1-antitrypsin,α2-macroglobulin,α1-microglobulin
and β2-microglobulin. While quantifying protein levels remains the
mainstay for measurement of inflammatory glycoprotein levels, mea-
suring the glycan portion of inflammatory proteins is becoming increas-
ingly useful for diagnostic purposes. This can be accomplished using
lectin-binding ELISAs (Table 2) as well as some of the newer high-
throughput technologies such as mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR) which have recently been in-
troduced to the clinical laboratory.

MS techniques are becoming more common place in clinical labora-
tories. However, effective analysis of protein-derived circulating glycans
is still difficult to accomplish due to the high complexity that is caused
by variations in glycan linkage and branching, macro- and micro-het-
erogeneity. Currently, a combination of methods is often used. Here
we describe some of themajor MS-based approaches used in glycomics
research which may eventually identify new tests for clinical use.
Methods for O-linked structures are less well developed compared to
methods for N-linked structures and will not be discussed in this
review.

Normal phase high performance liquid chromatography (HPLC) is a
well-known separation technique that has been used in laboratories for
years. In addition, ultra performance liquid chromatography (UPLC) in-
volves HPLC with very high pressure and is one of the newest chroma-
tography technologies in the field of glycomics. UPLC allows high
efficiency separations and reduced analysis times [28]. UPLC has the
ability to separate glycan isomers. Until recently, UPLC was not widely
used in the field of glycan profiling due to the lack of appropriate sta-
tionary phases [29,30]. Hydrophilic interaction liquid chromatography
(HILIC) is a separation technique which is related to normal phase
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HPLC. HILIC columns were originally used for analysis of highly polar
analytes and later also for other types of substances including peptides
[31] and glycans [32]. A limitation of HILIC-based analyses is the amount
of time required per chromatographic run. However, since the introduc-
tion of sub-2-μm stationary phases, HPLC or UPLC in combination with
HILIC have been used for analyzing glycans [29,32]. Separation of struc-
tural isomers is often achieved whichmakes HILIC in combination with
HPLC or UPLC a valuable tool for structural analysis of oligosaccharides.

Fluorescence detection is a glycan analysis method for quantifying
fluorescently labeled glycans. The labeled glycans can be separated by,
for example, HILIC and detected by sensitive fluorescence detectors or
byMS in some cases. The use of a fluorescence detector enables quanti-
fication of even minor glycans. Tagging the glycans with a fluorescent
label such as 2-aminobanzamide (2-AB) allows the glycan to be detect-
ed even at femtomole levels [33]. Besides 2-AB other fluorescent tags
are commercially available. The advantages of 2-AB is that it is compat-
ible withmultiple analytical methods includingMSwhichmakes it pos-
sible to obtain mass and structural information [34].

MS-based detection techniques are promising as enabling methods
in the field of glycomics. The glycan can be removed either enzymatical-
ly or chemically from the protein. Intact N-linked glycans can be enzy-
matically split from glycoproteins with an amidase such as peptide-N-
glycosidase F [34]. Alternatively, hydrazinolysis can be used for chemi-
cal release. MS provides molecular mass and structural information. A
wide variety of MS-based techniques are available for glycoconjugate
analysis. However, quantification by MS is not always reliable and for
some samples there can be overlap from isobaric glycans (discrete iso-
meric glycan structures that possess the same mass) [33]. MS can be
used alone or coupled to separation methods such as HPLC, UPLC,
HILIC or capillary electrophoresis to increase the sensitivity [35–37].
Furthermore, matrix assisted laser desorption–ionization-MS and
electrospray ionization-MS are often applied. If there are a variety of
possible isomers, each one may be discriminated from the other using
multistage analyses. However, MS data can be very complex and inter-
pretation requires expertise.

Although these techniques have been useful for identifying novel
glycan moieties on various glycoproteins, and it has been speculated
that these novel assays may eventually be useful for diagnostic pur-
poses, none of the MS-based techniques have been routinely employed
in the clinical laboratory to date.

Proton (1H) NMR, another high-throughput technological platform
that is able to quantify inflammatory glycoproteins based on their gly-
cans, was recently introduced to the clinical laboratory setting [38–
43]. Although it is not possible to identify and quantify individual pro-
teins via NMR, it is possible to measure subsets of glycoproteins based
on their shared glycan moieties [38,39,42]. Protons on the sugar resi-
dues in the oligosaccharide chains emit different signals depending on
their structural environment. For example, the N-acetyl methyl group
protons emit different NMR signals if they are part of GlcNAc as opposed
to N-acetylneuraminic acid (sialic acid), allowing for identification of
the various sugar residues based on the chemical shift of their protons,
i.e. the position of the signal peak in the NMR spectrum [38,39]. The
complex glycan structures of several acute phase proteins including
AGP and transferrin have been determined and catalogued using
NMR, allowing for easy identification of the NMR signals for a number
of the sugar residues found on inflammatory glycoproteins [38,39].

Recently, an NMR-based assay called GlycA was developed that
quantifies circulating inflammatory glycoproteins based on a subset of
mobile GlcNAc residues [42,44]. In fact, it is only the GlcNAc moieties
in β(1 → 2) or β(1 → 6) linkage with a preceding mannose that give
rise to theGlycANMR signal at 2.00±0.01 ppm in theNMR LipoProfile®
test spectra of serum or plasma [38,42,45]. It is also possible to quantify
themethyl signals fromGlcNAc residues at other positions in the bi-, tri-
, and tetra-antennary glycans as well as from sialic acid [38,42,44,45].
Therefore, it is possible that there are other NMR signals besides GlycA
that, when quantified, may provide useful information for the clinician.
The serumGlycANMR signal is comprised primarily of contributions
from the GlcNAc residues on AGP, haptoglobin, α1-antitrypsin, α1-
antichymotrypsin and transferrin [42]. Because plasma concentrations
of C-reactive protein (CRP) and cytokines are much lower in compari-
son and they are not heavily glycosylated, they contribute negligibly
to the measured GlycA signal [42]. Reduced glycan mobility is another
reason why not all proteins with GlcNAc residues produce observable
NMR signals, which is the case for fibrinogen and IgG [42]. Haptoglobin,
AGP, α1-antitrypsin and α1-antichymotrypsin are positive acute phase
proteins that increase in concentration and glycan complexity in inflam-
matory states [7,14–17], enabling GlycA to be a biomarker of systemic
inflammation that is associated with inflammatory markers such as
high-sensitivity CRP (hsCRP), fibrinogen, IL-6, serum amyloid A (SAA)
and lipoprotein-associated phospholipase A2 (Lp-PLA2) [42,46–51] as
well as increased neutrophil activity [52]. It has also been reported
that GlycA is related to increased mortality risk [1,52,53] [Gruppen et
al. unpublished results]. Therefore, despite similarities in disease associ-
ations, GlycA, CRP, fibrinogen and other inflammatory markers likely
capture different aspects of the inflammatory response [52]. Moreover,
it has been reported that hsCRP, but not GlycA, levels were decreased
after statin administration [53]. Therefore, it is clear that GlycA and
other inflammatory biomarkers may at least be in part independent,
and perhaps even additive, in the clinical information they impart. Fur-
thermore, as a composite biomarker that measures both the increased
protein levels and enhanced glycosylation states of the most abundant
circulating acute phase proteins, GlycA may be a better reflection of a
systemic acute phase response than any single glycoprotein component
[42]. For example, assays formeasuring individual acute phase proteins,
such as hsCRP, often exhibit high intra-individual variability [54–57].
One approach to overcome this issue is to measure multiple inflamma-
torymarkers at once. For instance, one can compute a low-grade inflam-
mation score, based on the Z-scores of a number of individual
inflammationmarkers, such as hsCRP, TNF-α, IL-6, IL-8, SAA, soluble in-
tercellular adhesion molecule 1 (sICAM-1), ceruloplasmin and hapto-
globin [58]. While useful for research purposes, this computation is
not convenient for physician use. GlycA, on the other hand, is already
a composite biomarker that simultaneouslymeasuresmultiplemarkers,
giving it the advantage of having lowwithin-subject biological variation
[42].

4. Potential clinical utility for inflammatory glycoprotein assays

4.1. Glycoprotein assays and cardiometabolic disorders

Besides serving as biomarkers of acute or chronic inflammation or
infection, elevations of glycoproteins such as hsCRP and fibrinogen are
of clinical interest as markers of CVD (Table 2). Driving much of this in-
terest is the established role of inflammation in all stages of the athero-
sclerotic disease process from lesion initiation to progression as well as
plaque destabilization [59,60]. Epidemiologic studies have confirmed
the link between systemic inflammation and adverse clinical outcomes
by demonstrating consistent, independent associations of hsCRP and fi-
brinogen with both incident CVD and all-cause mortality [61,62].
Among the many inflammatory proteins that could serve as clinical in-
dicators of the risk associated with inflammation, hsCRP has been fa-
vored due to its stability in fresh and frozen specimens, wide dynamic
range, and availability of relatively inexpensive, standardized, and pre-
cise high-sensitivity immunoassays [59,60,63,64].

Glycan moieties themselves, such as sialic acid (N-acetylneuraminic
acid), the terminal monosaccharide of glycoconjugates, have also been
shown to correlate with CVD [65]. Several types of assays have been de-
ployed for the quantification of total serum sialic acid including colori-
metric, enzymatic, chromatographic and fluorescence based assays
[65]. Although sialic acid can be found on glycolipids, the majority of
serum sialic acid can be found on the glycan chains of AGP, haptoglobin,
α1-antitrypsin, α1-antichymotrypsin, ceruloplasmin, fibrinogen and
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transferrin [65]. Sialic acid was shown to be positively associated with
TNFα and IL-6 [65] and multiple studies have shown positive associa-
tions of total serum sialic acid with CVD, stroke and mortality [65–68].
A recent study reported that sialic acid was an independent risk marker
for CVD during 40 years follow-up among Swedish individuals [69].
Taken together, sialic acid is a marker of systemic inflammation that
can be used for risk assessment in subjects with CVD, heart failure and
T2DM [65–67,69,70].

GlycA, the NMR signal derived from multiple inflammatory glyco-
proteins, was demonstrated to predict future CVD and T2DM (Table 2)
[71–73]. GlycA was shown to be related to the leptin/adiponectin
ratio, suggesting that adipose tissue-associated low-grade inflammation
could be involved in the regulation of inflammatory glycoproteins [49].
Similar to hsCRP, GlycA was found to be higher in subjects with meta-
bolic syndrome and was positively correlated with body mass index
(BMI) and insulin resistance determined by homeostasis model assess-
ment of insulin resistance (HOMA-IR) [48–50]. In the Women's Health
Study (WHS), GlycA was associated with CVD events, independent of
traditional risk factors [71]. In the Prevention of Renal and Vascular
End-stage Disease (PREVEND) study, GlycA was associated with inci-
dent CVD, defined as the combined end-point of CVmorbidity andmor-
tality, independent of clinical and lipid measures as well as renal
function [72]. Baseline concentrations of GlycA in the Justification for
the Use of Statins in Prevention: an Interventional Trial Evaluating
Rosuvastatin (JUPITER) trial were significantly associated with incident
CVD events, even when adjusting for established risk factors and a fam-
ily history of premature coronary heart disease [73]. Remarkably, this
association was only slightly attenuated by hsCRP, suggesting that the
two biomarkers are reflecting somewhat different pathobiological pro-
cesses [73]. In addition, GlycA was shown to be associated with future
major adverse coronary events and mortality in two different cohorts
of patients undergoing coronary angiography [1,52,74]. Of note, the as-
sociation of GlycAwith incident T2DM remained statistically significant
both in the WHS and PREVEND even after adjusting for traditional dia-
betes risk factors and hsCRP [43,75,76]. Thus evidence is accumulating
that GlycA may be a useful biomarker for the assessment of CVD and
T2DM risk.

A lectin-based assay, called LecT-Hepa, that exploits the changes in
the glycan structure of AGP has been developed to detect liver fibrosis
in patients with chronic viral hepatitis and NASH (Table 2) [77]. LecT-
Hepa is a multi-lectin antibody immunoassay that binds glycosylated
AGP [77]. First AGP is immunoprecipitated using a high-throughput, au-
tomated protein purification system (ED-01), then a fully automated
immunoassay analyzer (HISCL-2000i) is employed to acquire the two
glycoprotein binding parameters (AOL/DSA andMAL/DSA) that are pro-
duced by the binding of glycosylated AGP to three lectins isolated from
Aspergillus oryzae (AOL),Maackia amurensis (MAL) and Datura stramo-
nium (DSA) [77]. A formula is then used to calculate a score that was re-
ported to correlate with fibrosis stage as determined by liver biopsy
[77]. This assay gave comparable, if not better performance than the
FIB-4 index, for the diagnosis of significant fibrosis in chronic hepatitis
C patients [78] and comparable performance to FibroScan in hepatitis
B infected patients [79]. This assay, however, is not yet available in the
clinical laboratory.

Recently it was shown that quantification of two inflammatory gly-
coproteins quantified by ELISA, fucosylated haptoglobin and Mac-2
binding protein (also known as galectin-3 binding protein), may be use-
ful for the diagnosis of NASH and liver fibrosis (Table 2) [80]. The au-
thors hypothesized that the fucosylation-based sorting machinery is
disrupted in ballooning hepatocytes and that hyperfucosylated glyco-
proteins are secreted from the liver into serum in the diseased liver.
Based on this hypothesis they developed a lectin-based ELISA to quanti-
fy fucosylated haptoglobin and showed that this assaywas useful for the
prediction of ballooning hepatocytes in NASH [80]. They also showed
that Mac-2 binding protein, quantified by traditional ELISA, was a
good biomarker for liver fibrosis. Moreover, the combination of the
two glycoproteins was able to distinguish NASH from simple hepatic
steatosis [80]. However, additional clinical validation studies are needed
to fully understand the clinical usefulness of this combined biomarker
test.

4.2. Glycoprotein assays and autoimmune diseases

RA is an autoimmune disease that manifests itself as severe inflam-
mation in multiple joints, leading to erosions of the cartilage and bone
and sometimes causing joint deformity. Joint pain, swelling, and redness
are common symptoms of RA. Tight control of disease activity, including
monitoring of acute phase proteins is standard of care in RA manage-
ment [81,82]. The markers most commonly used to assess RA disease
activity are CRP and erythrocyte sedimentation rate (ESR) (Table 2)
[81,82]. Both tests have been incorporated into the Disease Activity
Score based on 28 joints (DAS28), the core set of measures proposed
in the American College of Rheumatology and the American College of
Rheumatology/European League Against Rheumatism RA remission
criteria [83–85]. However, bothCRP and ESR have limitations. For exam-
ple, ESR is altered by non-inflammatory conditions such as chronic kid-
ney disease, pregnancy, anemia, abnormal red blood cell shape or size,
and serum protein concentrations [86]. Because some of these con-
founding influences are unrelated to RA disease activity, the current
treat-to-target recommendations include cautions about the use of
ESR for monitoring RA activity [82]. HsCRP exhibits high variability
over time, potentially making it less reliable for assessment of RA dis-
ease activity at any one time point [55–57]. Moreover, CRP and ESR
values are in the normal range in up to half of patients with active dis-
ease and they are often discordant with each other. Thus, alternative
markers of inflammation whose measurements aren't affected by
these factors would be useful for assessing RA disease activity.

Recently a multi-biomarker disease activity (MBDA) blood test was
developed to assess disease activity in adult patients with RA (Table
2) [87–90]. The test measures 12 inflammatory biomarkers (VCAM-1,
EGF, VEGF-A, IL-6, TNF-R1, MMP-1, MMP-3, YKL-40, leptin, resistin,
SAA and CRP), including a number of cytokines and acute phase glyco-
proteins that play key roles in the underlying pathophysiology of RA
[87–90]. The MBDA test is based on an algorithm that uses the concen-
trations of the 12 biomarkers to generate a score that represents the
level of RA disease activity on a scale of 1 (lowest activity) to 100
(greatest). Analytical validation studies have proven the MBDA test to
be precise and reproducible [87–90]. The MBDA test was developed to
correlate with the 28-joint Disease Activity Score (DAS28) and has
been clinically validated by correlations with DAS28 and other disease
activity measures in independent RA cohorts, with thresholds
established for low, moderate and high disease activity [87–90]. Other
studies show that theMBDA test tracks responses to treatment with bi-
ologic and non-biologic disease-modifying antirheumatic drugs
(DMARDs) and may potentially be an indicator of progressive joint
damage in patients with RA [87–90]. The MBDA test, however, has not
been validated for diagnosing RA.

GlycA may be useful for assessing disease activity and monitoring
anti-inflammatory treatment in patients with autoimmune diseases
like RA and SLE (Table 2). GlycA was shown to be higher in RA and sys-
temic lupus erythematosus (SLE) [47,91,92]. In a cross-sectional study
that included 166 RA patients and 90 control subjects, GlycA concentra-
tions were higher in RA patients compared to control subjects [47].
Moreover, increased GlycA concentrations were robustly associated
with increasing degree of RA disease activity [47]. GlycA was associated
with the 28-joint count Disease Activity Score with erythrocyte sedi-
mentation rate (DAS28-ESR) and its components: tender and swollen
joint counts, patient-reported global health score, ESR and hsCRP [47].
Additionally, GlycA was significantly correlated with Larsen score, a ra-
diographic scoring of joint disease, whereas hsCRP and ESR were not
[47]. GlycA concentrations were not different between rheumatoid fac-
tor (RF) positive and negative RA patients, which was expected given
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that glycosylated immunoglobulins do not contribute to the GlycANMR
signal [42,47]. Additionally, GlycA was associated with coronary artery
atherosclerosis in patients with RA [47]. GlycA levels were also higher
in patients with SLE than matched control subjects [91]. In the same
study, GlycA levels were positively associated with ESR, hsCRP, E-
selectin, sICAM-1 and triglycerides, but not with creatinine, SLE Disease
Activity Index (SLEDAI), SLE Collaborating Clinics (SLICC/ACR) Damage
Index, or coronary calcium scores [91]. In a separate SLE cohort, mean
GlycA levels were somewhat higher in female patients with high dis-
ease activity vs. patients with low or no disease activity and non-
afflicted women [42,92]. In a longitudinal analysis of SLE activity,
GlycA increased significantly along with increases in SLEDAI [92].
Taken together, GlycA may have utility for assessing disease activity in
patients with autoimmune diseases such as RA and SLE. Given its ability
to predict CVD events and its association with coronary artery athero-
sclerosis, GlycA may also be useful for assessing CVD risk in patients
with autoimmune diseases, for whom traditional CVD risk factors such
as low density lipoprotein cholesterol (LDL-C) and total cholesterol
lack strong CVD associations [93–98].

4.3. Glycoprotein assays and cancer

Cancer is the second most common cause of death in developed
countries, with breast and prostate cancer being the most prevalent in
the United States [99]. While early detection has helped reduce can-
cer-related deaths, many cancers are not discovered until they are at a
more advanced stage, when prognosis is often not favorable. Most of
the clinically used cancer biomarkers are effective when applied to pa-
tients with later stage cancers but are often ineffective at detecting
early stage cancers. As is the case in other therapeutic areas, single bio-
markers have not been identified that have sufficient sensitivity and
specificity to be completely reliable. Therefore, there is an urgent need
for novel biomarkers with better performance for cancer diagnosis
and prognosis. As such, aberrant protein glycosylation is a well-known
hallmark of cancer and represents a promising source of new bio-
markers that can be used as standalone tests or in composite panels.

Unlike other disease areas, there are several FDA-cleared tests used
currently in medical practice that measure glycoproteins as biomarkers
of cancer (Table 2). The α-fetoprotein (AFP) test is used for diagnosis,
staging, detecting recurrence and monitoring therapy for
hepatocarcinoma (HCC) [12]. Serum levels, however, do not allow for
discrimination between HCC and benign liver disease [100]. An addi-
tional biomarker was developed that is based on a highly fucosylated
form of AFP that appears in serum at the stage of liver cirrhosis, just be-
fore the onset of HCC [100]. The AFP-1.3 fraction, as it is called, detects
both the circulating protein and the increased fucosylation that occurs
in patients with liver cancer and has been cleared by the FDA as amark-
er for early detection of HCC [100]. Additional liver-secreted proteins
with promise for early detection of HCC and disease progression are
fucosylated GP73, kininogen and haptoglobin [100,101]. Prostate-spe-
cific antigen (PSA) is a test that is used for early detection of prostate
cancer. However, the PSA test suffers from the inability to discriminate
between prostate cancer and benign prostate hyperplasia [12]. Recent
studies showed that altered fucosylation and sialylation of PSA may be
exploited to develop a more specific biomarker that is able to distin-
guish aggressive from nonaggressive forms of prostate cancer as well
as benign hyperplasia [12,100,102,103]. Cancer antigen 125 (also
known as CA125, mucin 16 or MUC16) and human epididymis protein
4 (HE4 or WFDC2) are glycoprotein tests that are used for detecting
ovarian cancer [12]. CA15-3 and CA27-29 are tests that measure the
amount of sialylated glycan or protein levels of mucin 1 (MUC1).
These tests are commonly used for breast cancer therapy [12].
Carcinoembryonic antigen (CEA), a test that measures glycoproteins
that are involved in cell adhesion, is used for monitoring therapy and
detecting recurrence of colon, gastric, pancreatic, lung or breast cancer
[12].
None of the single glycoprotein tests is considered optimal; there-
fore, better biomarker tests are needed for early diagnosis, prognosis
and personalized medicine in the cancer field [18]. Multivariate algo-
rithms have been developed that increase specificity and/or sensitivity
for cancer detection over single biomarker tests (Table 2). The OVA1®
test combines the results of β-2 microglobulin, CA125II, apolipoprotein
A-I, prealbumin and transferrin into one score of 0–10 [104]. The Risk of
Malignancy Algorithm or ROMA™ test combines the results of HE4 en-
zyme immunoassay (EIA) and CA125 II [105]. Both of these tests mea-
sure multiple circulating glycoproteins and have been cleared by the
FDA for prediction of malignant ovarian cancer. Additionally, an
OVA2® next generation multivariate index assay is currently being
evaluated by the FDA for clearance for the same indication. CA19-9 is
a cancer associatedmarker thatmeasures the amount of sialyl Lewis an-
tigen (SLea) tetrasaccharide on all circulating inflammatory glycopro-
teins and has been used to monitor response to therapy in patients
with an established diagnosis of pancreatic, colorectal, gastric or biliary
cancer [18,100].

There are many biomarkers with the potential for improving assay
performance when included in a multivariable algorithm. For example,
galactosylated, fucosylated and poly N-acetyllactosamine glycoforms of
α1-antitrypsin have the potential to distinguish between non-small cell
lung carcinoma and benign pulmonary disease [12]. Fucosylated α1-
antitrypsin also has the potential to distinguish adenocarcinoma from
benign pulmonary disease [12]. Fucosylated haptoglobin combined
with CEA may be useful as a prognostic biomarker in colorectal cancer
[106] and fucosylated haptoglobin alonemay be useful for prostate can-
cer as it correlated with Gleason scores and biochemical recurrence
after radical prostatectomy [107]. In addition, GlycA, the marker of cir-
culatingGlcNAc residues,was found to be associatedwith incident colo-
rectal cancer and colorectal cancer mortality but was not associated
with breast cancer ormortality from any other cancer in theWHS [108].

The fact that altered glycosylated forms of inflammatory glycopro-
teins have been associated with acute and chronic inflammatory dis-
eases as well as cancer provokes intriguing questions about the
potential links between inflammation and cancer. It has been hypothe-
sized that chronic inflammation plays a role as a causal factor for the de-
velopment of some cancers. For example, persistent infection with
Helicobacter pylori causes chronic atrophic gastritis which may lead to
dysplasia and gastric carcinoma [100]. Moreover, there is a well-
known connection between colorectal cancer and inflammation; how-
ever, it is not yet known whether chronic inflammation exacerbates
the progression to colorectal cancer or if colorectal cancer stimulates
the secretion of cytokines that then stimulate a chronic inflammatory
response [109]. The advent of high-throughput techniques for analyzing
glycan structures as well asmeasuring levels of inflammatory glycopro-
teins based on both their protein and glycan content should elicit much
research to address these questions in the near future.

4.4. Congenital disorders of glycosylation

Further evidence for the importance of glycans in protein function
and the potential use of glycan isoforms to increase specificity for dis-
ease diagnosis, stems from the study of monogenic disorders in the gly-
cosylation pathway, the congenital disorders of glycosylation (CDG)
[19]. Over 100 humangenetic disorders have been associatedwith aber-
rant glycan metabolism [110]. Because these defective genes affect pro-
teins in a variety of functionally diversemetabolic pathways, the clinical
presentation can vary, making differentiation between CDG subtypes
quite challenging. Currently, diagnostic tests for CDG are limited to elec-
trophoresis or MS-based tests that characterize the various glycoforms
of transferrin [19,111]. CDG-I mutations are diagnosed by the presence
of transferrin with unoccupied glycosylation sites, whereas CDG-II de-
fects are characterized by the presence of transferrin with immature,
truncated glycans [19]. N-glycan profiling holds promise for identifying
additional glycoprotein biomarkers to aid in the diagnosis of the many
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CDG that are known to exist [19,37]. Nevertheless, interpretation of gly-
can alterations is complicated by fact that the immune response can
lead to changes in glycan structure besides those caused by the under-
lying genetic defect. Therefore, global glycan profiling in complex bio-
logical samples for the purpose of diagnosing CDG holds promise, but
is not yet useful in the clinical laboratory setting.

5. Conclusions and future perspectives

With the implementation of personalized medicine comes the task
of discovering and evaluating new biomarkers that have the potential
to improve the performance characteristics of current tests for clinical
care. Many tests are being developed to date that support the relevance
of high throughput assays for biomarkers presumed to be associated
with chronic cardiometabolic disorders like CVD, T2DM and NASH, as
well as autoimmune disorders and cancer. Among other techniques,
NMR spectroscopy holds promise to identify subjects at risk for a num-
ber of low grade inflammation-associated diseases, and may also have
value to predict mortality [1,42,53,112,113]. As outlined in this review,
it is increasingly appreciated that knowledge about alterations in the
levels of glycoproteins in biological fluids as such, aswell aswith respect
to the extent and specificity of the various glycan structures may im-
prove risk stratification and identify novel pathogenic pathways. On
theone hand, abnormalities in theprocess of glycosylation can be linked
to distinct clinical entities, while on the other hand glycomics will open
new avenues from a systems biology perspective. It is anticipated that a
glycomics approach will also be helpful to forge a link with genomics,
lipidomics, proteomics and metabolomics, especially given the fact
that the entitiesmeasured in the latter ‘omics’ often contribute to the di-
versity observed in glycomics [21,114]. Of further relevance, although it
has been surmised that glycan levels are to an important extent genet-
ically determinedwith environmental factors possibly playing a less im-
portant role, it is clear that environmental factors such as smoking and
alcohol consumption often lead to measurable differences in glycan
structure [21,24,115]. Among other challenges, results from glycomics
analyses by high-throughput techniques combined with a genome-
wide association study (GWAS) approach are required to underpin po-
tentially important novel causal pathways in disease development
[116].

The complex chemistry of glycans makes detailed analyses of their
structures limited to specialist research laboratorieswith themost com-
plete structural analyses only being possible using a combination of sev-
eral advanced analytical techniques. From a clinical perspective there is
a quest for technologies to analyze complex samples quickly with min-
imal need for specialist facilities and technical expertise. However, it is
clear that we aremoving on a trajectory toward a timewhen thewealth
of information that has yet to be mined from glycoproteins and their
glycanswill contribute to amore personalized approach to patient care.
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