120 research outputs found

    Three Dimensional Quantitative Structure-Activity Relationships of Sulfonamides Binding Monoclonal Antibody by Comparative Molecular Field Analysis

    Get PDF
    The three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MabSMR) produced against sulfamerazine, was carried out by comparative molecular field analysis (CoMFA). The affinities of MabSMR, expressed as Log10IC50, for 17 sulfonamide analogs were determined by competitive fluorescence polarization immunoassay (FPIA). Removal of two outliers from the initial set of 17 sulfonamide analogs improved the predictability of the models. The 3D-QSAR model of 15 sulfonamides resulted in q2cv values of 0.600, and r2 values of 0.995, respectively. This novel study combining FPIA with CoMFA demonstrates that multidisciplinary research can be used as a useful tool to investigate antigen-antibody interactions and provide information required for design of novel haptens, which may result in new antibodies with properties already optimized by an antibody-based immunoassay

    Analysis of combined resistance to oxazolidinones and phenicols among bacteria from dogs fed with raw meat/vegetables and the respective food items

    Get PDF
    The gene optrA is the first gene that confers resistance to the oxazolidinone tedizolid, a last resort antimicrobial agent in human medicine. In this study we investigated the presence of optrA and the multi-resistance genes poxtA and cfr in enterococci and staphylococci from (i) pet animals known to be fed raw meat and vegetables and (ii) the respective food items. We examined 341 bacterial isolates from cats and dogs, 195 bacterial isolates from supermarket food items and only one E. faecium collected from industrial food in Beijing during 2016. Thirty-five (6.5%) of the 537 isolates, including 31/376 (8.2%) enterococci and 4/161 (2.5%) staphylococci, were positive for optrA, while all isolates were negative for poxtA and cfr. S1-nuclease pulsed-field gel electrophoresis (PFGE) and Southern blotting confirmed that optrA was located in the chromosomal DNA of 19 isolates and on a plasmid in the remaining 16 isolates. Whole genome sequencing revealed several different genetic environments of optrA in plasmid- or chromosome-borne optrA genes. PFGE, multilocus sequence typing (MLST) and/or SNP analysis demonstrated that the optrA-carrying Staphylococcus and Enterococcus isolates were genetically heterogeneous. However, in single cases, groups of related isolates were identified which might suggest a transfer of closely related optrA-positive E. faecalis isolates between food items and dogs

    Constitutive and Inducible Expression of the rRNA Methylase Gene erm(B) in Campylobacter

    Get PDF
    Macrolides are the antimicrobials of choice for treating human campylobacteriosis. The recent emergence of erm(B) in Campylobacter bacteria threatens the utility of this class of antibiotics. Here we report the constitutive and inducible expression of erm(B) in Campylobacter isolates derived from diarrheal patients and food-producing animals. Constitutive expression of erm(B) was associated with insertion and deletion in the regulatory region of the gene, providing the first documentation of the differential expression of erm(B) in Campylobacter bacteria

    Investigation of Haemophilus parasuis from healthy pigs in China

    Get PDF
    Haemophilus parasuis is a common colonizer of the upper respiratory tract of swine and frequently causes disease, especially in weaner pigs. To date, limited epidemiological data was available for H. parasuis from healthy pigs, which might be carriers of potential pathogenic strains. In this study, from September 2016 to October 2017, we investigated the prevalence and characteristics of H. parasuis from healthy pigs in China. Totally, we obtained 244 isolates from 1675 nasal samples from 6 provinces. H. parasuis isolation was more successful in weaner pigs (22.6%, 192/849), followed by finisher pigs (9.3%, 43/463), and sows (2.5%, 9/363). The most prevalent serovars were 7 (20.1%, 49/244), followed by 3 (14.8%, 36/244), 2 (14.3%, 35/244), 11 (12.7%, 31/244), 5/12 (5.7%, 14/244) and 4 (2.5%, 6/244). Bimodal or multimodal distributions of MICs were observed for most of the tested drugs, which suggested the presence of non-wild type populations. It was noted that the MIC90 values of tilmicosin (64 μg/ml) was relatively higher than that reported in previous studies. Our results suggest that: 1) potentially pathogenic serovars of H. parasuis are identified in healthy pigs, and 2) elevated MICs and presence of mechanisms of resistance not yet described for clinically important antimicrobial agents would increase the burden of disease caused by H. parasuis.info:eu-repo/semantics/acceptedVersio

    Presence of VIM-positive pseudomonas species in chickens and their surrounding environment

    Get PDF
    Metallo-β-lactamase gene blaVIM was identified on the chromosome of four Pseudomonas sp. isolates from a chicken farm, including one Pseudomonas aeruginosa isolate from a swallow (Yanornis martini), one Pseudomonas putida isolate from a fly, and two P. putida isolates from chickens. The four isolates shared two variants of blaVIM-carrying genomic contexts that resemble the corresponding regions of clinical metallo-β-lactamase-producing Pseudomonas spp. Our study suggests that the surveillance of carbapenemase-producing bacteria in livestock and their surrounding environment is urgently needed

    Identification of a Novel Genomic Island Conferring Resistance to Multiple Aminoglycoside Antibiotics in Campylobacter coli

    Get PDF
    Historically, the incidence of gentamicin resistance in Campylobacter has been very low, but recent studies reported a high prevalence of gentamicin-resistant Campylobacter isolated from food-producing animals in China. The reason for the high prevalence was unknown and was addressed in this study. PCR screening identified aminoglycoside resistance genes aphA-3 and aphA-7 and the aadE–sat4–aphA-3 cluster among 41 Campylobacter isolates from broiler chickens. Importantly, a novel genomic island carrying multiple aminoglycoside resistance genes was identified in 26 aminoglycoside resistant Campylobacter coli strains. Sequence analysis revealed that the genomic island was inserted between cadF and COO1582 on the C. coli chromosome and consists of 14 open reading frames (ORFs), including 6 genes (the aadE–sat4–aphA-3 cluster, aacA-aphD, aac, and aadE) encoding aminoglycoside-modifying enzymes. Analysis by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing indicated that the C. coli isolates carrying this unique genomic island were clonal, and the clone of PFGE subtype III and sequence type (ST) 1625 was particularly predominant among the C. coli isolates examined, suggesting that clonal expansion may be involved in dissemination of this resistance island. Additionally, we were able to transfer this genomic island from C. coli to a Campylobacter jejuni strain using natural transformation under laboratory conditions, and the transfer resulted in a drastic increase in aminoglycoside resistance in the recipient strain. These findings identify a previously undescribed genomic island that confers resistance to multiple aminoglycoside antibiotics. Since aminoglycoside antibiotics are used for treating occasional systemic infections caused by Campylobacter, the emergence and spread of this antibiotic resistance genomic island represent a potential concern for public health

    Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene

    Get PDF
    During the chemical vapor deposition (CVD) growth of graphene on Cu foils, evaporation of Cu and changes in the dimensions of Cu grains in directions both parallel and perpendicular to the foils are induced by thermal effects. Such changes in the Cu foil could subsequently change the shape and distribution of individual graphene domains grown on the foil surface, and thus influence the domain structure and electrical properties of the resulting graphene films. Here, a slower cooling rate is used after the CVD process, and the graphene films are found to have an improved electrical performance, which is considered to be associated with the Cu surface evaporation and grain structure changes in the Cu substrate.open

    Emergence of Multidrug-Resistant Campylobacter Species Isolates with a Horizontally Acquired rRNA Methylase

    Get PDF
    Antibiotic-resistant Campylobacter constitutes a serious threat to public health, and resistance to macrolides is of particular concern, as this class of antibiotics is the drug of choice for clinical therapy of campylobacteriosis. Very recently, a horizontally transferrable macrolide resistance mediated by the rRNA methylase gene erm(B) was reported in a Campylobacter coli isolate, but little is known about the dissemination of erm(B) among Campylobacter isolates and the association of erm(B)-carrying isolates with clinical disease. To address this question and facilitate the control of antibiotic-resistant Campylobacter, we determined the distribution of erm(B) in 1,554 C. coli and Campylobacter jejuni isolates derived from food-producing animals and clinically confirmed human diarrheal cases. The results revealed that 58 of the examined isolates harbored erm(B) and exhibited high-level resistance to macrolides, and most were recent isolates, derived in 2011-2012. In addition, the erm(B)-positive isolates were all resistant to fluoroquinolones, another clinically important antibiotic used for treating campylobacteriosis. The erm(B) gene is found to be associated with chromosomal multidrug resistance genomic islands (MDRGIs) of Gram-positive origin or with plasmids of various sizes. All MDRGIs were transferrable to macrolide-susceptible C. jejuni by natural transformation under laboratory conditions. Molecular typing of the erm(B)-carrying isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) identified diverse genotypes and outbreak-associated diarrheal isolates. Molecular typing also suggested zoonotic transmission of erm(B)-positive Campylobacter. These findings reveal an emerging and alarming trend of dissemination of erm(B) and MDRGIs in Campylobacter and underscore the need for heightened efforts to control their further spread
    corecore