11 research outputs found

    RESONANT MODES IN A 1.6 CELLS RF GUN

    Get PDF
    The SPARC photoinjector RF gun consists in the BNL/SLAC/UCLA 1.6 cell structure designed to resonate at 2856 MHz in the π mode. It will be demonstrated by a numerical modelization based on SUPERFISH code combined with the LC-circuit analysis that the two oscillating modes of the system usually indicated as 0-mode and π-mode (the operating mode) are in reality a π/3-mode-like and a π-mode-like. The consequences on the definition of the coupling coefficient and on the use of mode-separation based RF measurements are described

    Recent Advances and Novel Ideas for High Brightness Electron Beam Production Based on Photo-Injectors

    Get PDF
    Photo-injectors beam physics remains a fruitful and exciting field of research. New ideas have been recently proposed to achieve ultra-high brightness beams, as particularly needed in SASE-FEL experiments, and to produce flat beams as required in linear colliders. An overview of recent advancements in photo-injector beam physics is reported in this paper

    OPTIMIZING RF LINACS AS DRIVERS FOR INVERSE COMPTON SOURCES: THE ELI-NP CASE

    Get PDF
    The design guide-lines of RF Linacs to fulfil the requirements of high spectral density Inverse Compton Sources for the photo-nuclear science are mostly taken from the expertise coming from high brightness electron Linacs driving X-ray FEL's. The main difference is the quest for maximum phase space density (instead of peak brightness), but many common issues and techniques are exploited, in order to achieve an optimum design and layout for the machine. A relevant example in this field is the design of the hybrid C-band multi-bunch RF Linacs for the ELI-NP Gamma Beam System, aiming at improving by two orders of magnitude the present state of the art in spectral density available for the gamma-ray beam produced

    Conceptual Design of a Soft X‐ray SASE‐FEL Source

    Get PDF
    FELs based on SASE are believed to be powerful tools to explore the frontiers of basic sciences, from physics to chemistry to biology. Intense R&D programs have started in the USA and Europe in order to understand the SASE physics and to prove the feasibility of these sources. The allocation of considerable resources in the Italian National Research Plan (PNR) brought about the formation of a CNR‐ENEA‐INFN‐University of Roma "Tor Vergata" study group. A conceptual design study has been developed and possible schemes for linac sources have been investigated, bringing to the SPARX proposal. We report in this paper the results of a preliminary start to end simulation concerning one option we are considering based on an S‐band normal conducting linac with high brightness photoinjector integrated in a RF compressor

    Proton beam dose-mapping via color centers in LiF thin-film detectors by fluorescence microscopy

    No full text
    With the purpose of studying the behavior of novel solid-state lithium fluoride (LiF) films detectors based on the photoluminescence (PL) of radiation-induced defects for proton beam diagnostics and dosimetry, polycrystalline LiF thin films thermally evaporated on glass were irradiated at room temperature in a linear proton accelerator under development at ENEA. The irradiations were performed in air by proton beams of 3 and 7 MeV energy, in a fluence range from 1011 to 1015 protons/cm2. In the LiF films, proton irradiation induces the formation of F2 and F3+\text{F}_{3}^{+} aggregate color centers, which simultaneously emit broad PL bands in the visible spectral range under excitation in the blue one. The integrated PL signal, acquired by a fluorescence microscope equipped with a s-CMOS camera, shows a linear dependence on the dose deposited in LiF films, extending from 103 to 106 Gy, independently of the proton energy. A simple theoretical model is put forward for the formation of color centers in LiF and is utilized to obtain a proton beam dose-map by processing the PL image stored in the LiF film detectors

    Recent Results at the SPARC-LAB Facility

    No full text
    A new facility named SPARC-LAB (Sources for Plasma Accelerators and Radiation Compton with Lasers and Beams) has been recently launched at the INFN National Labs in Frascati, merging the potentialities of the old projects SPARC and PLASMONX. The SPARC project, a collaboration among INFN, ENEA and CNR, is now completed, hosting a 150 MeV high brightness electron beam injector which feeds a 12 meters long undulator. Observation of FEL radiation in the SASE, Seeded and HHG modes has been performed from 500 nm down to 40 nm wevelength. A second beam line has been also installed to drive a narrow band THz radiation source. In parallel to that, INFN decided to host a 300 TW laser that will be linked to the linac and devoted to explore laser-matter interaction, in particular with regard to laser-plasma acceleration in the self injection and external injection modes, (the PLASMONX experiments). The facility will be also used for particle driven plasma acceleration experiments (the COMB experiment). A Thomson scattering experiment coupling the electron bunch to the high-power laser to generate coherent monochromatic X-ray radiation is also in the commissioning phase

    SEEDING EXPERIMENTS AT SPARC

    No full text
    The SPARC Free Electron Laser can be operated in both SASE and seeded modes. A major part of the second stage of the commissioning, now undergoing, is dedicated to the characterization of the SASE radiation. Simultaneously, we are finalizing the experimental setup for seeding. We present an in-situ characterization of the two input seeds that are foreseen: both are obtained via harmonic generation, the first one in crystal (400 and 266 nm) and the second in rare gas (Argon). We also describe the specific diagnostics implemented for the electron-seed overlap in the undulator, together with the diagnostics for radiation analysis (2D spectrometer and FROG). The seeding will enable the operation of the SPARC FEL in original cascaded configurations
    corecore