10 research outputs found

    Elucidating the effect of iron acquisition systems in Klebsiella pneumoniae on susceptibility to the novel siderophore-cephalosporin cefiderocol

    Get PDF
    BACKGROUND: Cefiderocol (CFDC) is a novel siderophore-cephalosporin, effective against multidrug-resistant Gram-negative bacteria. As it has a siderophore side chain, it can utilize iron acquisition systems for penetration of the bacterial outer membrane. We aimed to elucidate the role of siderophores and iron uptake receptors in defining Klebsiella pneumoniae susceptibility to CFDC. METHODS: Initially, 103 K. pneumoniae strains were characterized for susceptibility to different antibiotics including CFDC. CFDC minimum inhibitory concentrations (MIC) were determined in iron-depleted and iron-enriched conditions. Iron uptake genes including siderophores, their receptors, ferric citrate (fecA) and iron uptake (kfu) receptors were detected by PCR in all the strains. For 10 selected strains, gene expression was tested in iron-depleted media with or without CFDC treatment and compared to expression in iron-enriched conditions. RESULTS: CFDC exhibited 96.1% susceptibility, being superior to all the other antibiotics (MIC50: 0.5 and MIC90: 4 μg/ml). Only three strains (2.9%) were intermediately susceptible and a pandrug resistant strain (0.97%) was resistant to CFDC (MIC: 8 and 256 μg/ml, respectively). The presence of kfu and fecA had a significant impact on CFDC MIC, especially when co-produced, and if coupled with yersiniabactin receptor (fyuA). CFDC MICs were negatively correlated with enterobactin receptor (fepA) expression and positively correlated with expression of kfu and fecA. Thus, fepA was associated with increased susceptibility to CFDC, while kfu and fecA were associated with reduced susceptibility to CFDC. CFDC MICs increased significantly in iron-enriched media, with reduced expression of siderophore receptors, hence, causing less drug uptake. CONCLUSION: Iron acquisition systems have a significant impact on CFDC activity, and their altered expression is a factor leading to reduced susceptibility. Iron concentration is also a major player affecting CFDC susceptibility; therefore, it is essential to explore possible ways to improve the drug activity to facilitate its use to treat infections in iron-rich sites

    British Thoracic Society guideline for the use of long-term macrolides in adults with respiratory disease

    Get PDF
    The full British Thoracic Society (BTS) guideline for the use of long-term macrolides in adults with respiratory disease is published in Thorax. The following is a summary of the recommendations and good practice points. The sections referred to in the summary refer to the full guideline. The appendices are available in the full guideline and online appendices are available on the BTS website. This is the first BTS guideline to use the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach as part of the process of guideline development and the guideline was used to pilot the new methodology.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted version, submitted versio

    Buruli Ulcer in United Kingdom Tourist Returning from Latin America

    Get PDF
    We report a case of Buruli ulcer in a tourist from the United Kingdom. The disease was almost certainly acquired in Brazil, where only 1 case had previously been reported. The delay in diagnosis highlights the need for physicians to be aware of the disease and its epidemiology

    Elucidating the effect of iron acquisition systems in Klebsiella pneumoniae on susceptibility to the novel siderophore-cephalosporin cefiderocol

    Get PDF
    Background Cefiderocol (CFDC) is a novel siderophore-cephalosporin, effective against multidrug-resistant Gram-negative bacteria. As it has a siderophore side chain, it can utilize iron acquisition systems for penetration of the bacterial outer membrane. We aimed to elucidate the role of siderophores and iron uptake receptors in defining Klebsiella pneumoniae susceptibility to CFDC. Methods Initially, 103 K. pneumoniae strains were characterized for susceptibility to different antibiotics including CFDC. CFDC minimum inhibitory concentrations (MIC) were determined in iron-depleted and iron-enriched conditions. Iron uptake genes including siderophores, their receptors, ferric citrate (fecA) and iron uptake (kfu) receptors were detected by PCR in all the strains. For 10 selected strains, gene expression was tested in iron-depleted media with or without CFDC treatment and compared to expression in iron-enriched conditions. Results CFDC exhibited 96.1% susceptibility, being superior to all the other antibiotics (MIC50: 0.5 and MIC90: 4 μg/ml). Only three strains (2.9%) were intermediately susceptible and a pandrug resistant strain (0.97%) was resistant to CFDC (MIC: 8 and 256 μg/ml, respectively). The presence of kfu and fecA had a significant impact on CFDC MIC, especially when co-produced, and if coupled with yersiniabactin receptor (fyuA). CFDC MICs were negatively correlated with enterobactin receptor (fepA) expression and positively correlated with expression of kfu and fecA. Thus, fepA was associated with increased susceptibility to CFDC, while kfu and fecA were associated with reduced susceptibility to CFDC. CFDC MICs increased significantly in iron-enriched media, with reduced expression of siderophore receptors, hence, causing less drug uptake. Conclusion Iron acquisition systems have a significant impact on CFDC activity, and their altered expression is a factor leading to reduced susceptibility. Iron concentration is also a major player affecting CFDC susceptibility; therefore, it is essential to explore possible ways to improve the drug activity to facilitate its use to treat infections in iron-rich sites

    Table_1_Discerning the role of polymyxin B nonapeptide in restoring the antibacterial activity of azithromycin against antibiotic-resistant Escherichia coli.xlsx

    No full text
    Antimicrobial resistance is a global public health threat. Antibiotic development pipeline has few new drugs; therefore, using antibiotic adjuvants has been envisioned as a successful method to preserve existing medications to fight multidrug-resistant (MDR) pathogens. In this study, we investigated the synergistic effect of a polymyxin derivative known as polymyxin B nonapeptide (PMBN) with azithromycin (AZT). A total of 54 Escherichia coli strains were first characterized for macrolide resistance genes, and susceptibility to different antibiotics, including AZT. A subset of 24 strains was then selected for synergy testing by the checkerboard assay. PMBN was able to re-sensitize the bacteria to AZT, even in strains with high minimum inhibitory concentrations (MIC: 32 to ≥128 μg/ml) for AZT, and in strains resistant to the last resort drugs such as colistin and meropenem. The fractional inhibitory concentration index was lower than 0.5, demonstrating that PMBN and AZT combinations had a synergistic effect. The combinations worked efficiently in strains carrying mphA gene encoding macrolide phosphotransferase which can cause macrolide inactivation. However, the combinations were inactive in strains having an additional ermB gene encoding macrolide methylase which causes ribosomal drug target alteration. Killing kinetics study showed a significant reduction of bacterial growth after 6 h of treatment with complete killing achieved after 24 h. Transmission electron microscopy showed morphological alterations in the bacteria treated with PMBN alone or in combination with AZT, with evidence of damage to the outer membrane. These results suggested that PMBN acted by increasing the permeability of bacterial outer membrane to AZT, which was also evident using a fluorometric assay. Using multiple antimicrobial agents could therefore be a promising strategy in the eradication of MDR bacteria. PMBN is a good candidate for use with other antibiotics to potentiate their activity, but further studies are required in vivo. This will significantly contribute to resolving antimicrobial resistance crisis.</p

    Data_Sheet_1_Discerning the role of polymyxin B nonapeptide in restoring the antibacterial activity of azithromycin against antibiotic-resistant Escherichia coli.docx

    No full text
    Antimicrobial resistance is a global public health threat. Antibiotic development pipeline has few new drugs; therefore, using antibiotic adjuvants has been envisioned as a successful method to preserve existing medications to fight multidrug-resistant (MDR) pathogens. In this study, we investigated the synergistic effect of a polymyxin derivative known as polymyxin B nonapeptide (PMBN) with azithromycin (AZT). A total of 54 Escherichia coli strains were first characterized for macrolide resistance genes, and susceptibility to different antibiotics, including AZT. A subset of 24 strains was then selected for synergy testing by the checkerboard assay. PMBN was able to re-sensitize the bacteria to AZT, even in strains with high minimum inhibitory concentrations (MIC: 32 to ≥128 μg/ml) for AZT, and in strains resistant to the last resort drugs such as colistin and meropenem. The fractional inhibitory concentration index was lower than 0.5, demonstrating that PMBN and AZT combinations had a synergistic effect. The combinations worked efficiently in strains carrying mphA gene encoding macrolide phosphotransferase which can cause macrolide inactivation. However, the combinations were inactive in strains having an additional ermB gene encoding macrolide methylase which causes ribosomal drug target alteration. Killing kinetics study showed a significant reduction of bacterial growth after 6 h of treatment with complete killing achieved after 24 h. Transmission electron microscopy showed morphological alterations in the bacteria treated with PMBN alone or in combination with AZT, with evidence of damage to the outer membrane. These results suggested that PMBN acted by increasing the permeability of bacterial outer membrane to AZT, which was also evident using a fluorometric assay. Using multiple antimicrobial agents could therefore be a promising strategy in the eradication of MDR bacteria. PMBN is a good candidate for use with other antibiotics to potentiate their activity, but further studies are required in vivo. This will significantly contribute to resolving antimicrobial resistance crisis.</p

    MIC distribution for antibiotics (CFDC, MEM, CAZ, CPM and COL) tested on the bacterial strains.

    No full text
    MIC distribution for antibiotics (CFDC, MEM, CAZ, CPM and COL) tested on the bacterial strains.</p

    Institutions, Informality, and Wage Flexibility: Evidence from Brazil IMF Working Paper Western Hemisphere Department Institutions, Informality, and Wage Flexibility: Evidence from Brazil Prepared by Marcello Estevão and Irineu de Carvalho Filho* Authoriz

    No full text
    Abstract Even though institutions are created to protect workers, they may interfere with labor market functioning, raise unemployment, and end up being circumvented by informal contracts. This paper uses Brazilian microeconomic data to show that the institutional changes introduced by the 1988 Constitution lowered the sensitivity of real wages to changes in labor market slack and could have contributed to the ensuing higher rates of unemployment in the country. Moreover, the paper shows that states that faced higher increases in informality (i.e., illegal work contracts) following the introduction of the new Constitution tended to have smaller drops in wage responsiveness to macroeconomic conditions, thus suggesting that informality serves as a escape valve to an overregulated environment. JEL Classification Numbers:E26, J30, J5
    corecore