33 research outputs found

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services

    Get PDF
    Globally, anthropogenic environmental change is exacerbating the already vulnerable conditions of many people and ecosystems. In order to obtain food, water, raw materials and shelter, rural people modify forests and other ecosystems, affecting the supply of ecosystem services that contribute to livelihoods and well-being. Despite widespread awareness of the nature and extent of multiple impacts of land-use changes, there remains limited understanding of how these impacts affect trade-offs among ecosystem services and their beneficiaries across spatial scales. We assessed how rural communities in two forested landscapes in Indonesia have changed land uses over the last 20 years to adapt their livelihoods that were at risk from multiple hazards. We estimated the impact of these adaptation strategies on the supply of ecosystem services by comparing different benefits provided to people from these land uses (products, water, carbon, and biodiversity), using forest inventories, remote sensing, and interviews. Local people converted forests to rubber plantations, reforested less productive croplands, protected forests on hillsides, and planted trees in gardens. Our results show that land-use decisions were propagated at the landscape scale due to reinforcing loops, whereby local actors perceived that such decisions contributed positively to livelihoods by reducing risks and generating co-benefits. When land-use changes become sufficiently widespread, they affect the supply of multiple ecosystem services, with impacts beyond the local scale. Thus, adaptation implemented at the local-scale may not address development and climate adaptation challenges at regional or national scale (e.g. as part of UN Sustainable Development Goals or actions taken under the UNFCCC Paris Agreement). A better understanding of the context and impacts of local ecosystem-based adaptation is fundamental to the scaling up of land management policies and practices designed to reduce risks and improve well-being for people at different scales.This research was carried out by the Center for International Forestry Research (CIFOR) in partnership with the “Centre de Coopération Internationale en Recherche Agronomique pour le Développement” (CIRAD) as part of the CGIAR Research Program on Forests, Trees and Agroforestry. It received financial support from the Australian Agency for International Development (AusAID) under the Agreement 63650 and the International Climate Initiative (IKI) of the German Ministry of Environment (BMUB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Engaging with the future: framings of adaptation to climate change in conservation

    No full text
    The term ‘adaptation’ is commonplace in conservation research and practice, but often without a reflection on the assumptions, expectations, or frames of reference used to define goals and actions. Communities of practice (e.g. conservation researchers, protected areas managers) have different interpretations of climate change impacts on biodiversity and different ways of defining, operationalizing and implementing adaptation. Their cognitive and motivational expectations for the future are associated with different paths to reach such desired futures. To understand how adaptation is framed in conservation, we undertook a systematic review with a thematic synthesis of the definitions of the term as used in the academic conservation literature. From a sample of 150 articles, only 36 provided a definition of adaptation. We critically appraised the explicit definitions to identify emergent themes that represent particular adaptation approaches. Themes were then grouped, and each group was assigned to a scholarly tradition, onto-epistemological approach and theoretical perspective. Based on theoretical perspectives on social change, we propose a framework (including individual cognitive basis, social interactions, and openness to alternatives) to analyse how change is framed in the definitions and how the framings influence adaptation options. The grouped themes represent passive, active, or indirect adaptation approaches. We used these themes to generate a conceptual model to guide conservation researchers and practitioners engaged in climate adaptation research, policy and management to aid reflection and understanding of the options available to design adaptation agendas and allow negotiation of diverse interests, views and expectations about the future

    Adaptation in the Anthropocene: How we can support ecosystems to enable our response to change

    No full text

    Adapter la restauration des terres à un climat en évolution: tenir compte du connu et de l'inconnu

    No full text

    Para adaptar la restauración de la tierra a un clima cambiante: aceptemos lo que sabemos y lo que no

    No full text

    Enhancing drought monitoring and early warning by linking indicators to impacts

    No full text
    Monitoring and Early-Warning (M&EW) systems are crucial for reducing societal vulnerability to drought. While there are a range of extant M&EW systems globally, such systems are typically based on physical (hydro-climatic) indicators, and they have rarely been linked to societal or environmental impacts. This is the starting point for the international, transdisciplinary project DrIVER (Drought Impacts and Vulnerability thresholds in monitoring and Early warning research). This paper introduces the DrIVER project and presents early research highlights including a review of current M&EW capacities and knowledge gaps on the three continents, preliminary results of indicator-to-impact analyses and an overview of the novel social learning framework being developed by the project
    corecore