139 research outputs found

    The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    Get PDF
    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions

    Classifying Floating Potential Measurement Unit Data Products as Science Data

    Get PDF
    We are Co-Investigators for the Floating Potential Measurement Unit (FPMU) on the International Space Station (ISS) and members of the FPMU operations and data analysis team. We are providing this memo for the purpose of classifying raw and processed FPMU data products and ancillary data as NASA science data with unrestricted, public availability in order to best support science uses of the data

    In-Situ F2-Region Plasma Density and Temperature Measurements from the International Space Station

    Get PDF
    The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006. is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). This instrument package provides a new opportunity lor collaborative multi-instrument studies of the F-region ionosphere during both quiet and disturbed periods. This presentation first describes the operational parameters for each of the FPMU probes and shOWS examples of an intra-instrument validation. We then show comparisons with the plasma density and temperature measurements derived from the TIMED GUVI ultraviolet imager, the Millstone Hill ground based incoherent scatter radar, and DIAS digisondes, Finally we show one of several observations of night-time equatorial density holes demonstrating the capabilities of the probes lor monitoring mid and low latitude plasma processes

    Relationship Between Alfvenic Fluctuations and Heavy Ion Heating in the Cusp at 1 Re

    Get PDF
    We look at the effect of heavy ion heating from their coupling with observed broadband (BB-ELF) emissions. These wave fluctuations are common to many regions of the ionosphere and magnetosphere and have been described as spatial turbulence of dispersive Alfven waves (DAW) with short perpendicular wavelengths. With Polar passing through the cusp at 1 Re in the Spring of 1996, we show the correlation of their wave power with mass-resolved O+ derived heating rates. This relationship lead to the study of the coupling of the thermal O+ ions and these bursty electric fields. We demonstrate the role of these measurements in the suggestion of DAW and stochastic ion heating and the observed density cavity characteristics

    On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    Get PDF
    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities

    Validation of Ionospheric Measurements from the International Space Station (ISS)

    Get PDF
    The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006, is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-Sweep Langmuir Probe. This instrument package provides a new opportunity for collaborative multi-instrument studies of the F-region ionosphere during both quiet and disturbed periods. This presentation first describes the operational parameters for each of the FPMU probes and shows examples of an intra-instrument validation. We then show comparisons with the plasma density and temperature measurements derived from the TIMED GUVI ultraviolet imager, the Millstone Hill ground based incoherent scatter radar, and DIAS digisondes, Finally we show one of several observations of night-time equatorial density holes demonstrating the capabilities of the probes for monitoring mid and low latitude plasma processes

    Opportunities for Utilizing the International Space Station for Studies of F2- Region Plasma Science and High Voltage Solar Array Interactions with the Plasma Environment

    Get PDF
    The near circular, 51.6deg inclination orbit of the International Space Station (ISS) is maintained within an altitude range of approximately 300 km to 400 km providing an ideal platform for conducting in-situ studies of space weather effects on the mid and low-latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) is a suite of instruments installed on the ISS in August 2006 which includes a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). The primary purpose for deploying the FPMU is to characterize ambient plasma temperatures and densities in which the ISS operates and to obtain measurements of the ISS potential relative to the space plasma environment for use in characterizing and mitigating spacecraft charging hazards to the vehicle and crew. In addition to the engineering goals, data from the FPMU instrument package is available for collaborative multi-satellite and ground based instrument studies of the F-region ionosphere during both quiet and disturbed periods. Finally, the FPMU measurements supported by ISS engineering telemetry data provides a unique opportunity to investigate interactions of the ISS high voltage (160 volt) solar array system with the plasma environment. This presentation will provide examples of FPMU measurements along the ISS orbit including night-time equatorial plasma density depletions sampled near the peak electron density in the F2-region ionosphere, charging phenomenon due to interaction of the ISS solar arrays with the plasma environment, and modification of ISS charging due to visiting vehicles demonstrating the capabilities of the FPMU probes for monitoring mid and low latitude plasma processes as well as vehicle interactions with the plasma environment

    Observations and Validation of Plasma Density, Temperature, and O+ Abundance From a Langmuir Probe Onboard the International Space Station

    Get PDF
    The Floating Potential Measurement Unit (FPMU) has been operational on board the International Space Station (ISS) since 2006. One of the instruments in the FPMU suite is a spherical wide-sweeping Langmuir probe, referred to as the WLP, which is sampled at a temporal cadence of 1 s giving in-situ measurements of the plasma density and electron temperature. In this study we present our refinements to the Langmuir probe analysis algorithm that address the uncertainties associated with photoelectron emission current from the metal probe. We also derive the fraction of O+ ions as a secondary data product, which shows decrease in O+ abundance in the post-midnight sector during solar minimum. The derived plasma parameters are compared and validated with an independent in-situ measurement technique, overlapping ground-based incoherent scatter radar measurements, as well as International Reference Ionosphere model output. The reduced data set spans the entire solar cycle 24 and shows the F-region ionosphere variance at ISS altitudes

    Climatology of Deep O+ Dropouts in the Night-Time F-Region in Solar Minimum Measured by a Langmuir Probe Onboard the International Space Station

    Get PDF
    The Floating Potential Measurement Unit (FPMU) onboard the International Space Station includes a Wide sweeping Langmuir Probe (WLP) that has been operating in the F-region of the ionosphere at ∼400 km since 2006. While traditional Langmuir probe estimates include critical plasma parameters like electron density and temperature, we have also extracted the O+ percentage from the total ion constituents. This O+ composition dataset from the recent minimum in the Solar Cycle 24 reveals orbits with dropouts in O+ to below 80% of the total background ion density at ISS orbital altitudes. The observed O+ percentages during these dropouts are much lower than the values predicted by the International Reference Ionosphere 2016 (IRI2016) empirical model. In this paper, we present the climatology of these O+ dropouts with their dependency on season, local time and geographical location. The results show that the lowered O+ percentages are more significant in the winter hemispheres and are routinely observed for orbits in the pre-sunrise periods. The patterns in O+ dropouts can be explained in part from the lowering of the O+/H+ transition height during solar minimum along with patterns in neutral wind variation

    Using Space Weather Variability in Evaluating the Environment Design Specifications for NASA'S Constellation Program

    Get PDF
    Spectral models of solar particle events and trapped radiation belts are necessary for the design requirements of total ionizing radiation dose, single event effects, and spacecraft charging. Space radiation and plasma environment specifications for hardware design are necessarily conservative to assure system robustness for a wide range of space environments
    • …
    corecore