337 research outputs found

    Assessment performance and emittance measurements tests of Basler digital camera vs. the standard BTV system at CLEAR.

    No full text
    In this report, the new digital system installed at CLEAR was analyzed. To measure its efficiency, beam Emittance and Twiss parameters were tested by comparing the results of the Basler digital camera with the results of the traditional BTV system. The new digital system presented better results regarding the quality and resolution of the images obtained. In addition, this digital system presented a smaller standard error of the mean beam size, which led to a lower final error of the emittance and Twiss parameters. Besides, Monte Carlos was used to propagate the errors. In general, these results appear to be the same as with the BTV camera, especially in current ranges near and equidistant to the minimum point of the parabola obtained after the Quadrupole Scan. In the horizontal plane, beam size values for current ranges far from the minimum point tend to create slightly different parabolas in both cameras, which leads to different results. In the vertical plane, this issue was not observed. The main responsible seems to be a bad alignment in the installation of the Basler digital camera. In the horizontal plane, a normalized emittance of 17.163 ±\pm 0.14 mm.mrad and 13.91 ± 0.18 mm.mrad and in the vertical plane were obtained for the Basler camera. On the other hand, a normalized emittance of 17.167 ±\pm 0.12 mm.mrad in the horizontal plane and 13.84 ±\pm 0.077 mm.mrad in the vertical plane for the BTV camera were obtained. All these calculation were done with an energy of 200 MeV

    Probing the nature of the χc1(3872)\chi_{c1}(3872) state using radiative decays

    No full text
    International audienceThe radiative decays χc1(3872)ψ(2S)γ\chi_{c1}(3872)\rightarrow\psi(2S)\gamma and χc1(3872)J/ψγ\chi_{c1}(3872)\rightarrow J/\psi\gamma are used to probe the~nature of the~χc1(3872)\chi_{c1}(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an~integrated luminosity of~9fb1^{-1}. Using the~B+χc1(3872)K+B^+\rightarrow \chi_{c1}(3872)K^+decay, the χc1(3872)ψ(2S)γ\chi_{c1}(3872)\rightarrow \psi(2S)\gamma process is observed for the first time and the ratio of its partial width to that of the χc1(3872)J/ψγ\chi_{c1}(3872)\rightarrow J/\psi\gamma decay is measured to be Γχc1(3872)ψ(2S)γΓχc1(3872)J/ψγ=1.67±0.21±0.12±0.04, \frac{\Gamma_{\chi_{c1}(3872)\rightarrow \psi(2S)\gamma}} {\Gamma_{\chi_{c1}(3872)\rightarrow J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm0.04 , where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S)\psi(2S) and J/ψJ/\psi mesons. The measured ratio makes the interpretation of the χc1(3872)\chi_{c1}(3872) state as a~pure D0Dˉ0+Dˉ0D0D^0\bar{D}^{*0}+\bar{D}^0D^{*0} molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872)\chi_{c1}(3872) state

    Study of the rare decay J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^-

    No full text
    International audienceThe rare electromagnetic J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016-2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4fb15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J/ψμ+μJ/\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J/ψμ+μJ/\psi \to \mu^+\mu^- decay

    Amplitude analysis of B+ψ(2S)K+π+πB^+ \to \psi(2S) K^+ \pi^+ \pi^- decays

    No full text
    International audienceThe first full amplitude analysis of B+ψ(2S)K+π+πB^+ \to \psi(2S) K^+ \pi^+ \pi^- decays is performed using proton-proton collision data corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} recorded with the LHCb detector. The rich K+π+πK^+ \pi^+ \pi^- spectrum is studied and the branching fractions of the resonant substructure associated with the prominent K1(1270)+K_1(1270)^+ contribution are measured. The data cannot be described by conventional strange and charmonium resonances only. An amplitude model with 53 components is developed comprising 11 hidden-charm exotic hadrons. New production mechanisms for charged charmonium-like states are observed. Significant resonant activity with spin-parity JP=1+J^P = 1^+ in the ψ(2S)π+\psi(2S) \pi^+ system is confirmed and a multi-pole structure is demonstrated. The spectral decomposition of the ψ(2S)π+π\psi(2S) \pi^+ \pi^- invariant-mass structure, dominated by X0ψ(2S)ρ(770)0X^0 \to \psi(2S) \rho(770)^0 decays, broadly resembles the J/ψϕJ/\psi \phi spectrum observed in B+J/ψϕK+B^+ \to J/\psi \phi K^+ decays. Exotic ψ(2S)K+π\psi(2S) K^+ \pi^- resonances are observed for the first time

    Probing the nature of the χc1(3872)\chi_{c1}(3872) state using radiative decays

    No full text
    International audienceThe radiative decays χc1(3872)ψ(2S)γ\chi_{c1}(3872)\rightarrow\psi(2S)\gamma and χc1(3872)J/ψγ\chi_{c1}(3872)\rightarrow J/\psi\gamma are used to probe the~nature of the~χc1(3872)\chi_{c1}(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an~integrated luminosity of~9fb1^{-1}. Using the~B+χc1(3872)K+B^+\rightarrow \chi_{c1}(3872)K^+decay, the χc1(3872)ψ(2S)γ\chi_{c1}(3872)\rightarrow \psi(2S)\gamma process is observed for the first time and the ratio of its partial width to that of the χc1(3872)J/ψγ\chi_{c1}(3872)\rightarrow J/\psi\gamma decay is measured to be Γχc1(3872)ψ(2S)γΓχc1(3872)J/ψγ=1.67±0.21±0.12±0.04, \frac{\Gamma_{\chi_{c1}(3872)\rightarrow \psi(2S)\gamma}} {\Gamma_{\chi_{c1}(3872)\rightarrow J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm0.04 , where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S)\psi(2S) and J/ψJ/\psi mesons. The measured ratio makes the interpretation of the χc1(3872)\chi_{c1}(3872) state as a~pure D0Dˉ0+Dˉ0D0D^0\bar{D}^{*0}+\bar{D}^0D^{*0} molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872)\chi_{c1}(3872) state

    Amplitude analysis of B+ψ(2S)K+π+πB^+ \to \psi(2S) K^+ \pi^+ \pi^- decays

    No full text
    International audienceThe first full amplitude analysis of B+ψ(2S)K+π+πB^+ \to \psi(2S) K^+ \pi^+ \pi^- decays is performed using proton-proton collision data corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} recorded with the LHCb detector. The rich K+π+πK^+ \pi^+ \pi^- spectrum is studied and the branching fractions of the resonant substructure associated with the prominent K1(1270)+K_1(1270)^+ contribution are measured. The data cannot be described by conventional strange and charmonium resonances only. An amplitude model with 53 components is developed comprising 11 hidden-charm exotic hadrons. New production mechanisms for charged charmonium-like states are observed. Significant resonant activity with spin-parity JP=1+J^P = 1^+ in the ψ(2S)π+\psi(2S) \pi^+ system is confirmed and a multi-pole structure is demonstrated. The spectral decomposition of the ψ(2S)π+π\psi(2S) \pi^+ \pi^- invariant-mass structure, dominated by X0ψ(2S)ρ(770)0X^0 \to \psi(2S) \rho(770)^0 decays, broadly resembles the J/ψϕJ/\psi \phi spectrum observed in B+J/ψϕK+B^+ \to J/\psi \phi K^+ decays. Exotic ψ(2S)K+π\psi(2S) K^+ \pi^- resonances are observed for the first time

    Study of the rare decay J ⁣/ψμ+μμ+μJ\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^-\mu^+\mu^-

    No full text
    The rare electromagnetic J ⁣/ψμ+μμ+μJ\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016--2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4fb15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J ⁣/ψμ+μJ\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J ⁣/ψμ+μJ\mskip -3mu/\mskip -2mu\psi \to \mu^+\mu^- decay.The rare electromagnetic J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016-2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4fb15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J/ψμ+μJ/\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J/ψμ+μJ/\psi \to \mu^+\mu^- decay

    Study of the rare decay J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^-

    No full text
    International audienceThe rare electromagnetic J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016-2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4fb15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J/ψμ+μJ/\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J/ψμ+μJ/\psi \to \mu^+\mu^- decay

    Amplitude analysis of B+ψ(2S)K+π+πB^+ \to \psi(2S) K^+ \pi^+ \pi^- decays

    No full text
    International audienceThe first full amplitude analysis of B+ψ(2S)K+π+πB^+ \to \psi(2S) K^+ \pi^+ \pi^- decays is performed using proton-proton collision data corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} recorded with the LHCb detector. The rich K+π+πK^+ \pi^+ \pi^- spectrum is studied and the branching fractions of the resonant substructure associated with the prominent K1(1270)+K_1(1270)^+ contribution are measured. The data cannot be described by conventional strange and charmonium resonances only. An amplitude model with 53 components is developed comprising 11 hidden-charm exotic hadrons. New production mechanisms for charged charmonium-like states are observed. Significant resonant activity with spin-parity JP=1+J^P = 1^+ in the ψ(2S)π+\psi(2S) \pi^+ system is confirmed and a multi-pole structure is demonstrated. The spectral decomposition of the ψ(2S)π+π\psi(2S) \pi^+ \pi^- invariant-mass structure, dominated by X0ψ(2S)ρ(770)0X^0 \to \psi(2S) \rho(770)^0 decays, broadly resembles the J/ψϕJ/\psi \phi spectrum observed in B+J/ψϕK+B^+ \to J/\psi \phi K^+ decays. Exotic ψ(2S)K+π\psi(2S) K^+ \pi^- resonances are observed for the first time

    Study of the rare decay J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^-

    No full text
    International audienceThe rare electromagnetic J/ψμ+μμ+μJ/\psi \to \mu^+\mu^-\mu^+\mu^- decay is observed with a significance greatly exceeding the discovery threshold, using proton-proton collision data collected by the LHCb experiment during 2016-2018 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4fb15.4\,\text{fb}^{-1}. The rate of this decay is measured relative to that of the J/ψμ+μJ/\psi \to \mu^+\mu^- mode. Using the QED model for the four-muon decay in the efficiency estimation, its branching fraction is determined to be \begin{equation*} {\mathcal{B}}(J/\psi \to \mu^+\mu^-\mu^+\mu^-) = (1.13\pm0.10\pm0.05\pm0.01)\times 10^{-6}, \end{equation*} where the uncertainties are statistical, systematic and due to the uncertainty on the branching fraction of the J/ψμ+μJ/\psi \to \mu^+\mu^- decay
    corecore