41 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationPeriodic temperature measurements in the DOI/GTN-P Deep Borehole Array on the western Arctic Slope of Alaska have shown a strong near-surface permafrost warming over the last 40 years, particularly since ∼ 1990. Due to the manner in which these deep wells were drilled, the portion of the observed permafrost warming caused by climate change has remained unclear. Other factors that have strongly influenced temperatures near the wellbores include the heat deposited into permafrost during drilling and local-landscape changes associated with drilling operations (creation of reserve pits and drill pads). Multidimensional heat-transfer models capable of assessing the magnitude of the drilling and local-landscape disturbances near the wellbores have not been available. For the western Arctic Slope, such models must be capable of simulating heat-transfer processes in layered fine-grained mudrocks whose thermal properties are highly nonlinear due to the occurrence of unfrozen water at temperatures well below 0°C. An assessment of the drilling and landscape-change effects also requires knowledge of the specific thermophysical properties occurring at the well sites. Little information has been available about these properties on the western Arctic Slope. To establish the portion of the observed permafrost warming related to drilling and landscape-change effects, multidimensional (2-D cylindrical, 3-D cartesian) numerical heat-transfer models were created that simulate heat flow in layered heterogenous materials surrounding a wellbore, phase changes, and the unfrozen water properties of a wide range of fine-grained sediments. Using these models in conjunction with the borehole temperature measurements, the mean thermophysical properties of permafrost rock units on the western Arctic Slope were determined using an optimization process. Incorporation of local meteorological information into the optimization allows a more refined estimate of the thermal properties to be determined at a well site. Applying this methodology to the East Simpson #1 well on the Beaufort Sea coast (70°55.046'N, 154°37.286'W), the freezing point of permafrost is found to be -1.05°C at this site and thermal diffusivities range 0.22-0.40 × 10 -6 m2 s-1. Accounting for the drilling and landscape-change effects, tundra adjacent to East Simpson is found to have warmed 5.1 K since the mid-1880s. Of this, 3.1 K (60%) of the warming has occurred since 1970

    Modeling Englacial Radar Attenuation at Siple Dome, West Antarctica, Using Ice Chemistry and Temperature Data

    Get PDF
    The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet

    Greenland and Canadian Arctic ice temperature profiles database

    Full text link
    Here, we present a compilation of 95 ice temperature profiles from 85 boreholes from the Greenland ice sheet and peripheral ice caps, as well as local ice caps in the Canadian Arctic. Profiles from only 31 boreholes (36 %) were previously available in open-access data repositories. The remaining 54 borehole profiles (64 %) are being made digitally available here for the first time. These newly available profiles, which are associated with pre-2010 boreholes, have been submitted by community members or digitized from published graphics and/or data tables. All 95 profiles are now made available in both absolute (meters) and normalized (0 to 1 ice thickness) depth scales and are accompanied by extensive metadata. These metadata include a transparent description of data provenance. The ice temperature profiles span 70 years, with the earliest profile being from 1950 at Camp VI, West Greenland. To highlight the value of this database in evaluating ice flow simulations, we compare the ice temperature profiles from the Greenland ice sheet with an ice flow simulation by the Parallel Ice Sheet Model (PISM). We find a cold bias in modeled near-surface ice temperatures within the ablation area, a warm bias in modeled basal ice temperatures at inland cold-bedded sites, and an apparent underestimation of deformational heating in high-strain settings. These biases provide process level insight on simulated ice temperatures

    GISP2-D Temperature

    No full text

    The Use of Borehole Temperature Measurements to Infer Climatic Changes in Arctic Alaska

    No full text
    Periodic temperature measurements in the DOI/GTN-P Deep Borehole Array on the western Arctic Slope of Alaska have shown a strong near-surface permafrost warming over the last 40 years, particularly since ∼ 1990. Due to the manner in which these deep wells were drilled, the portion of the observed permafrost warming caused by climate change has remained unclear. Other factors that have strongly influenced temperatures near the wellbores include the heat deposited into permafrost during drilling and local-landscape changes associated with drilling operations (creation of reserve pits and drill pads). Multidimensional heat-transfer models capable of assessing the magnitude of the drilling and local-landscape disturbances near the wellbores have not been available. For the western Arctic Slope, such models must be capable of simulating heat-transfer processes in layered fine-grained mudrocks whose thermal properties are highly nonlinear due to the occurrence of unfrozen water at temperatures well below 0°C. An assessment of the drilling and landscape-change effects also requires knowledge of the specific thermophysical properties occurring at the well sites. Little information has been available about these properties on the western Arctic Slope. To establish the portion of the observed permafrost warming related to drilling and landscape-change effects, multidimensional (2-D cylindrical, 3-D cartesian) numerical heat-transfer models were created that simulate heat flow in layered heterogenous materials surrounding a wellbore, phase changes, and the unfrozen water properties of a wide range of fine-grained sediments. Using these models in conjunction with the borehole temperature measurements, the mean thermophysical properties of permafrost rock units on the western Arctic Slope were determined using an optimization process. Incorporation of local meteorological information into the optimization allows a more refined estimate of the thermal properties to be determined at a well site. Applying this methodology to the East Simpson #1 well on the Beaufort Sea coast (70°55.046'N, 154°37.286'W), the freezing point of permafrost is found to be –1.05°C at this site and thermal diffusivities range 0.22–0.40 × 10 –6 m2 s–1. Accounting for the drilling and landscape-change effects, tundra adjacent to East Simpson is found to have warmed 5.1 K since the mid-1880s. Of this, 3.1 K (60%) of the warming has occurred since 1970

    Reconstructed global monthly land air temperature dataset (1880–2017)

    No full text
    Abstract Land surface air temperature is an essential climate variable for understanding rapid global environmental changes. Sparse network coverage prior to the 1950s is a significant source of uncertainty in global climate change evaluations. Recognizing the importance of spatial coverage, more stations are continually being added to global climate networks. A challenge is how to best use the information introduced by the new station observations to enhance our understanding and assessment of global climate states and changes, particularly for times prior to the mid‐20th century. In this study, Data INterpolating Empirical Orthogonal Functions (DINEOF) were used to reconstruct mean monthly air temperatures from the Global Historical Climatology Network‐monthly (GHCNm version 4) over the land surface from 1880 through 2017. The final reconstructed air temperature dataset covers about 95% of the global land surface area, improving the spatial coverage by ~80% during 1880–1900 and by 10%–20% since the 1950s. Validation tests show that the mean absolute error of the reconstructed data is less than 0.82°C. Comparison with the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model output shows that the reconstructed dataset substantially reduces the bias in global datasets caused by sparse station coverage, particularly before the 1950s
    corecore