4 research outputs found
Body Image Dissatisfaction among Pediatric Patients with Inflammatory Bowel Disease
Objectives: To determine risk factors for body image dissatisfaction among pediatric patients with inflammatory bowel disease (IBD). Study design: We performed a cross-sectional study of children aged 9-18 years in the IBD Partners Kids & Teens cohort. Participants completed surveys including demographics, disease characteristics and activity indices, and psychosocial outcomes measured by IMPACT-III questionnaires. We defined body image dissatisfaction if participants answered ?I look awful? or ?I look bad.? Bivariate analyses assessed associations between body image dissatisfaction and demographic, disease-related and psychosocial factors; logistic regression models evaluated associations between risk factors and body image dissatisfaction. Results: IMPACT-III was completed by 664 patients, with 74 (11.1%) reporting body image dissatisfaction. Patients with body image dissatisfaction were more likely to be female (P < .01), older (median age 15 vs 13 years, P < .01), and diagnosed with IBD at an older age (12 vs 10 years, P < .01). Those with body image dissatisfaction had greater body mass index percentile (P = .02), more active disease (P < .01), more current steroid use (P < .01), and more depression and anxiety (P < .01). Female sex (OR 2.31; 95% CI 1.22-4.39), depression (OR 4.73; 95% CI 2.41-9.26), and anxiety (OR 5.42; 95% CI 2.48-11.80) were independently associated with body image dissatisfaction. Conclusions: In this cohort, risk factors for body image dissatisfaction include female sex, older age at diagnosis, active disease, current steroid use, greater body mass index, and comorbid mood disorder. Interventions targeting modifiable risk factors for body image dissatisfaction may improve quality of life in pediatric patients with body image dissatisfaction
The TESS-Keck Survey. II. An Ultra-Short-Period Rocky Planet And Its Siblings Transiting The Galactic Thick-Disk Star TOI-561
We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultra-short-period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/H] = −0.41 ± 0.05, [α/Fe] = +0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8 M⊕ and g cm−3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3 M⊕ and 1.6 ± 0.6 g cm−3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, ground-based photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies
The TESS-Keck survey. II. An ultra-short-period rocky planet and its siblings transiting the galactic thick-disk star TOI-561
We report the discovery of TOI-561, a multiplanet system in the galactic thick disk that contains a rocky, ultrashort- period planet. This bright (V = 10.2) star hosts three small transiting planets identified in photometry from the NASA TESS mission: TOI-561 b (TOI-561.02, P = 0.44 days, Rp = 1.45 ± 0.11 R⊕), c (TOI-561.01, P = 10.8 days, Rp = 2.90 ± 0.13 R⊕), and d (TOI-561.03, P = 16.3 days, Rp = 2.32 ± 0.16 R⊕). The star is chemically ([Fe/ H] = -0.41 ± 0.05, [a/Fe]=+0.23 ± 0.05) and kinematically consistent with the galactic thick-disk population, making TOI-561 one of the oldest (10 ± 3 Gyr) and most metal-poor planetary systems discovered yet. We dynamically confirm planets b and c with radial velocities from the W. M. Keck Observatory High Resolution Echelle Spectrometer. Planet b has a mass and density of 3.2 ± 0.8M⊕ and 5.5+2.0-1.6g cm-3, consistent with a rocky composition. Its lower-than-average density is consistent with an iron-poor composition, although an Earth-like iron-to-silicates ratio is not ruled out. Planet c is 7.0 ± 2.3M⊕ and 1.6 ± 0.6 g cm-3, consistent with an interior rocky core overlaid with a low-mass volatile envelope. Several attributes of the photometry for planet d (which we did not detect dynamically) complicate the analysis, but we vet the planet with high-contrast imaging, groundbased photometric follow-up, and radial velocities. TOI-561 b is the first rocky world around a galactic thick-disk star confirmed with radial velocities and one of the best rocky planets for thermal emission studies