40,575 research outputs found

    Star formation bursts in isolated spiral galaxies

    Get PDF
    We study the response of the gaseous component of a galactic disc to the time dependent potential generated by N-body simulations of a spiral galaxy. The results show significant variation of the spiral structure of the gas which might be expected to result in significant fluctuations in the Star Formation Rate (SFR). Pronounced local variations of the SFR are anticipated in all cases. Bursty histories for the global SFR, however, require that the mean surface density is much less (around an order of magnitude less) than the putative threshold for star formation. We thus suggest that bursty star formation histories, normally attributed to mergers and/or tidal interactions, may be a normal pattern for gas poor isolated spiral galaxies.Comment: 7 pages, 7 figures To be published in Monthly Notices Roy. Astr. So

    Confined coherence and analytic properties of Green's functions

    Full text link
    A simple model of noninteracting electrons with a separable one-body potential is used to discuss the possible pole structure of single particle Green's functions for fermions on unphysical sheets in the complex frequency plane as a function of the system parameters. The poles in the exact Green's function can cross the imaginary axis, in contrast to recent claims that such a behaviour is unphysical. As the Green's function of the model has the same functional form as an approximate Green's function of coupled Luttinger liquids no definite conclusions concerning the concept of "confined coherence" can be drawn from the locations of the poles of this Green's function.Comment: 3 pages, 3 figure

    Government Performance and Life Satisfaction in Contemporary Britain

    Get PDF
    This paper investigates relationships between public policy outcomes and life satisfaction in contemporary Britain. Monthly national surveys gathered between April 2004 and December 2008 are used to analyze the impact of policy delivery both at the micro and macro levels, the former relating to citizens personal experiences, and the latter to cognitive evaluations of and affective reactions to the effectiveness of policies across the country as a whole. The impact of salient political events and changes in economic context involving the onset of a major financial crisis also are considered. Analyses reveal that policy outcomes, especially microlevel ones, significantly influence life satisfaction. The effects of both micro- and macrolevel outcomes involve both affective reactions to policy delivery and cognitive judgments about government performance. Controlling for these and other factors, the broader economic context in which policy judgments are made also influences life satisfaction. © 2010 Southern Political Science Association

    Development of a contra-rotating tidal current turbine and analysis of performance

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. Highfrequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    Design and testing of a contra-rotating tidal current turbine

    Get PDF
    A contra-rotating marine current turbine has a number of attractive features: nearzero reactive torque on the support structure, near-zero swirl in the wake, and high relative inter-rotor rotational speeds. Modified blade element modelling theory has been used to design and predict the characteristics of such a turbine, and a model turbine and test rig have been constructed. Tests in a towing tank demonstrated the feasibility of the concept. Power coefficients were high for such a small model and in excellent agreement with predictions, confirming the accuracy of the computational modelling procedures. High-frequency blade loading data were obtained in the course of the experiments. These show the anticipated dynamic components for a contra-rotating machine. Flow visualization of the wake verified the lack of swirl behind the turbine. A larger machine is presently under construction for sea trials

    Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment

    Get PDF
    Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called ``apparent'' contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the ``apparent'' contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle, i.e.\ the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape, must be regarded as dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of the moving contact line

    Interchain coherence of coupled Luttinger liquids at all orders in perturbation theory

    Full text link
    We analyze the problem of Luttinger liquids coupled via a single-particle hopping \tp and introduce a systematic diagrammatic expansion in powers of \tp. An analysis of the scaling of the diagrams at each order allows us to determine the power-law behavior versus \tp of the interchain hopping and of the Fermi surface warp. In particular, for strong interactions, we find that the exponents are dominated by higher-order diagrams producing an enhanced coherence and a failure of linear-response theory. Our results are valid at any finite order in \tp for the self-energy.Comment: 4 pages, 3 ps figures. Accepted for publication in Phys. Rev. Let
    • …
    corecore