48 research outputs found

    HLA monomers as a tool to monitor indirect allorecognition

    Get PDF
    BACKGROUND: Recognition of donor antigens can occur through two separate pathways: the direct pathway (non-self HLA on donor cells) and the indirect pathway (self-restricted presentation of donor derived peptides on recipient cells). Indirect allorecognition is important in the development of humoral rejection; therefore, there is an increasing interest in the monitoring of indirect alloreactive T-cells. We have used an in vitro model to determine the optimal requirements for indirect presentation and assessed the risk for semidirect presentation in this system. METHODS: HLA-typed monocyte-derived dendritic cells (moDCs) were incubated with cellular fragments or necrotic cells and incubated with either indirect or direct alloreactive T-cell clones. T-cell reactivity was measured through proliferation or cytokine secretion. HLA-typed moDC, monocytes, or PBMCs were incubated with HLA class I monomers, in combination with either direct/indirect T-cell clones. RESULTS: Although both were efficiently taken up, alloreactivity was limited to the semi-direct pathway, as measured by allospecific CD4 (indirect) and CD8 T-cell clones (direct) when cells were used. In contrast, HLA-A2 monomers were not only efficiently taken up but also processed and presented by HLA-typed moDC, monocytes, and PBMCs. Activation was shown by a dose-dependent induction of IFN-γ production and proliferation by the CD4 T-cell clone. Antigen presentation was most efficient when the monomers were cultured for longer periods (24-48 hr) in the presence of the T-cells. Using this method, no reactivity was observed by the CD8 T-cell clone, confirming no semidirect alloreactivity. CONCLUSION: We have developed a system that could be used to monitor indirect alloreactive T-cells.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    Evaluation of spelt germplasm for polyphenol oxidase activity and aluminium resistance

    Get PDF
    Kidney transplantation is the best treatment option for patients with end-stage renal failure. At present, approximately 800 Dutch patients are registered on the active waiting list of Eurotransplant. The waiting time in the Netherlands for a kidney from a deceased donor is on average between 3 and 4years. During this period, patients are fully dependent on dialysis, which replaces only partly the renal function, whereas the quality of life is limited. Mortality among patients on the waiting list is high. In order to increase the number of kidney donors, several initiatives have been undertaken by the Dutch Kidney Foundation including national calls for donor registration and providing information on organ donation and kidney transplantation. The aim of the national PROCARE consortium is to develop improved matching algorithms that will lead to a prolonged survival of transplanted donor kidneys and a reduced HLA immunization. The latter will positively affect the waiting time for a retransplantation. The present algorithm for allocation is among others based on matching for HLA antigens, which were originally defined by antibodies using serological typing techniques. However, several studies suggest that this algorithm needs adaptation and that other immune parameters which are currently not included may assist in improving graft survival rates. We will employ a multicenter-based evaluation on 5429 patients transplanted between 1995 and 2005 in the Netherlands. The association between key clinical endpoints and selected laboratory defined parameters will be examined, including Luminex-defined HLA antibody specificities, T and B cell epitopes recognized on the mismatched HLA antigens, non-HLA antibodies, and also polymorphisms in complement and Fc receptors functionally associated with effector functions of anti-graft antibodies. From these data, key parameters determining the success of kidney transplantation will be identified which will lead to the identification of additional parameters to be included in future matching algorithms aiming to extend survival of transplanted kidneys and to diminish HLA immunization. Computer simulation studies will reveal the number of patients having a direct benefit from improved matching, the effect on shortening of the waiting list, and the decrease in waiting time

    Allocation to highly sensitized patients based on acceptable mismatches results in low rejection rates comparable to nonsensitized patients

    Get PDF
    Contains fulltext : 208426.pdf (publisher's version ) (Open Access)Whereas regular allocation avoids unacceptable mismatches on the donor organ, allocation to highly sensitized patients within the Eurotransplant Acceptable Mismatch (AM) program is based on the patient's HLA phenotype plus acceptable antigens. These are HLA antigens to which the patient never made antibodies, as determined by extensive laboratory testing. AM patients have superior long-term graft survival compared with highly sensitized patients in regular allocation. Here, we questioned whether the AM program also results in lower rejection rates. From the PROCARE cohort, consisting of all Dutch kidney transplants in 1995-2005, we selected deceased donor single transplants with a minimum of 1 HLA mismatch and determined the cumulative 6-month rejection incidence for patients in AM or regular allocation. Additionally, we determined the effect of minimal matching criteria of 1 HLA-B plus 1 HLA-DR, or 2 HLA-DR antigens on rejection incidence. AM patients showed significantly lower rejection rates than highly immunized patients in regular allocation, comparable to nonsensitized patients, independent of other risk factors for rejection. In contrast to highly sensitized patients in regular allocation, minimal matching criteria did not affect rejection rates in AM patients. Allocation based on acceptable antigens leads to relatively low-risk transplants for highly sensitized patients with rejection rates similar to those of nonimmunized individuals

    T-cell epitopes shared between immunizing HLA and donor HLA associate with graft failure after kidney transplantation

    Get PDF
    CD4(+) T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4(+) memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4(+) memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4(+) memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4(+) memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation.Nephrolog

    Pretransplant Donor-Specific Anti-HLA Antibodies and the Risk for Rejection-Related Graft Failure of Kidney Allografts

    No full text
    Background. The presence of donor-specific antibodies (DSAs) against HLA before kidney transplantation has been variably associated with decreased long-term graft survival. Data on the relation of pretransplant DSA with rejection and cause of graft failure in recipients of donor kidneys are scarce. Methods. Patients transplanted between 1995 and 2005 were included and followed until 2016. Donor-specific antibodies before transplantation were determined retrospectively. For cause, renal transplant biopsies were reviewed. Results. Pretransplant DSAs were found in 160 cases on a total of 734 transplantations (21.8%). In 80.5% of graft failures, a diagnostic renal biopsy was performed. The presence of pretransplant DSA (DSApos) increased the risk of graft failure within the first 3 months after transplantation (5.2% vs. 9.4%) because of rejection with intragraft thrombosis (p<0.01). One year after transplantation, DSApos recipients had an increased hazard for antibody-mediated rejection at 10 years (9% DSAneg vs. 15% DSApos, p=0.01) with significant decreased graft survival at 10 years (79% DSAneg vs. 69% DSApos, p=0.02). This could largely contribute to an increased graft loss because of antibody-mediated rejection in the DSApos group. The incidence and graft loss because of T cell-mediated rejection was not affected by the presence of pretransplant DSA. Conclusions. Pretransplant DSAs are a risk factor for early graft loss and increase the incidence for humoral rejection and graft loss but do not affect the risk for T cell-mediated rejection.Transplantation and autoimmunit
    corecore